博碩士論文 101356001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.207.102.38
姓名 陳伯全(CHEN POCHUAN)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以高級氧化程序礦化水中對-硝基苯酚之研究
(Using Advanced Oxidation Process to Mineralize p-Nitrophenol in Aqueous Solution)
相關論文
★ 中國塵霾長程傳輸對臺灣細懸浮微粒(PM2.5)濃度的影響★ 高級中學學生「環境教育認知」評估之研究
★ 中南半島生質燃燒於長程傳輸路徑上之光學與化學特性探討★ Wind Power Assessment for the Bay Islands, Honduras
★ 國小六年級學生實施河川環境教育課程之學習成效探討-以桃園縣某國小為例★ 評估未來臺灣再生能源發電之供電特性
★ 顯影去墨(膜)廢液前處理之研究★ 數值風場改進及其應用於都市風能評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要將含有p-Nitrophenol之溶液,以O3結合UV及H2O2之高級氧化程序進行礦化處理,並以總有機碳(Total Organic Carbon; TOC)作為p-Nitrophenol之礦化效率指標。於不同高級氧化程序, p-Nitrophenol礦化效率排序為:UV/O3>UV/O3/H2O2>O3>O3/H2O2>UV/H2O2,最佳p-Nitrophenol礦化效率之高級氧化程序為UV/O3程序(78.1%)。
於UV/O3程序,實驗結果顯示隨著H2O2注入劑量之增加, p-Nitrophenol之礦化效率隨之減少。H2O2在UV/O3程序主要扮演 掠奪者之角色。於O3程序,控制H2O2注入劑量為0~31.60 mg/min,實驗結果顯示H2O2注入劑量3.95 mg/min時對p-Nitrophenol礦化提升之效率最為顯著,於UV/O3程序,分別控制反應過程之pH值為3.0~10.0,實驗結果顯示控制pH值時皆優於未控制pH值,其中pH值為10.0礦化效率最佳。另以初始反應濃度10~100 mg/L,實驗結果顯示隨著初始反應濃度增加,p-Nitrophenol礦化效率及轉化率隨之降低。
由實驗結果可觀察到UV/O3程序礦化p-Nitrophenol之過程並非單純之一階反應(First-order reaction),而是擬一階反應(Pseudo first-order reaction);擬一階反應常數(kobs)介於0.0032~0.0175 min-1之間,隨著H2O2注入劑量增加,擬一階反應常數(kobs)隨之降低;不同pH值之擬一階反應常數(kobs)介於0.0158~0.0291 min-1之間,控制pH值為10.0時具有最佳之反應速率;不同p-Nitrophenol初始反應濃度之擬一階反應常數(kobs)介於0.0134~0.0806 min-1之間。
摘要(英) This present study aims to evaluate the performance of advanced oxidation processes that combines UV, O3 and H2O2 to mineralize p-Nitrophenol in aqueous solution. The concentration of total organic carbon (TOC) was selected as an efficiency index of p-Nitrophenol mineralization. For different advanced oxidation processes, the efficiency of p-Nitrophenol mineralization followed the sequence UV/O3>UV/O3/H2O2>O3>O3/H2O2>UV/H2O2. The UV/O3 process got the best 78.1% efficiency of p-Nitrophenol mineralization.
For the UV/O3 process, the results indicated that as the concentration of H2O2 increased, the rate of p-Nitrophenol mineralization declined. In other words, H2O2 acted as a scavenger of hydroxide radical ( ). While for the O3 process, it indicated that the efficiency of p-Nitrophenol mineralization is optimal when H2O2 dosage is 3.95 mg/min among .0 to 31.60 mg/min. Also for the UV/O3 process, the mineralization efficiency is optimal when pH was fixed to be 10.0 than pH was fixed below 10.0 or when pH was not fixed in oxidation process. When initial p-Nitrophenol concentration was controlled as 10~100 mg/L and pH was controlled as 10.0, it indicated that the efficiency of p-Nitrophenol mineralization declined as the initial p-Nitrophenol concentration increased. Hence, the mineralization rate of highly concentrated p-Nitrophenol was lower.
It is observed that process of p-Nitrophenol mineralized by UV/O3 is not just a simple first-order reaction but pseudo first-order reaction. The pseudo first-order rate constant (kobs) of different H2O2 dosage was calculated between 0.0032~0.0175 min-1. As the H2O2 increases, the reaction rate constant declined. The pseudo first-order rate constant (kobs) for pH among 3.0 to 10.0 was calculated to be between 0.0158~0.0291 min-1. Still, when pH was fixed to be10.0 the oxidation process got the best reaction rate constant. The pseudo first-order rate constant (kobs) for different initial p-Nitrophenol concentration was calculated between 0.0134~0.0806 min-1.
關鍵字(中) ★ 高級氧化
★ 臭氧
★ UV
★ p-Nitrophenol
★ 礦化效率
關鍵字(英) ★ Advanced oxidation
★ Ozone
★ UV
★ p-Nitrophenol
★ Mineralization efficiency
論文目次 目 錄
摘 要 i
Abstract iii
誌 謝 v
目錄 vi
表目錄 x
圖目錄 xiii
第一章 前 言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧 4
2.1 對-硝基苯酚之特性 4
2.1.1 對-硝基苯酚基本性質 4
2.1.2 對-硝基苯酚化學合成方式 5
2.1.3 對-硝基苯酚之用途 6
2.1.4 對-硝基苯酚對人體之危害 7
2.2 高級氧化程序介紹 8
2.2.1 臭氧基本性質 11
2.2.2 UV光基本性質 19
2.2.3 氫氧自由基基本性質 22
2.2.4 O3/UV高級氧化程序 23
2.2.5 O3/UV/H2O2高級氧化程序 24
2.3 高級氧化程序礦化苯酚類污染物之文獻 27
第三章 實驗設備與方法 37
3.1 實驗設計 37
3.1.1 不同反應程序之礦化效率探討 37
3.1.2 不同反應條件之礦化效率探討 39
3.2 實驗系統架構與測試 41
3.2.1 實驗系統架構 41
3.2.2 實驗系統測試 41
3.3 實驗器材與藥品 44
3.3.1 實驗器材 44
3.3.2 實驗藥品 46
3.4 分析方法 47
3.4.1 氣相臭氧濃度分析方法 47
3.4.2 水中臭氧濃度分析方法 48
3.4.3 UV照射強度分析方法 49
3.4.4 總有機碳分析方法 50
第四章 結果與討論 52
4.1 不同氧化程序對p-Nitrophenol之礦化效率探討 52
4.1.1 UV礦化p-Nitrophenol之效率 52
4.1.2 H2O2礦化p-Nitrophenol之效率 54
4.1.3 O3礦化p-Nitrophenol之效率 56
4.1.4 UV/H2O2礦化p-Nitrophenol之效率 58
4.1.5 O3/ H2O2礦化p-Nitrophenol之效率 60
4.1.6 UV/O3礦化p-Nitrophenol之效率 62
4.1.7 UV/O3/H2O2礦化p-Nitrophenol之效率 64
4.1.8 不同氧化程序礦化p-Nitrophenol彙整說明 66
4.2 不同反應條件礦化p-Nitrophenol效率之探討 69
4.2.1 H2O2注入劑量對p-Nitrophenol礦化效率之影響 69
4.2.2 pH值對UV/O3程序礦化p-Nitrophenol效率之影響 79
4.2.3 p-Nitrophenol初始反應濃度對UV/O3程序礦化效率之影響 83
4.2.4 不同氧化程序礦化p-Nitrophenol彙整說明 87
4.3 程序礦化p-Nitrophenol之反應動力關係探討 89
4.3.1 不同H2O2注入劑量對UV/O3程序礦化p-Nitrophenol之反應動力關係探討 89
4.3.2 UV/O3程序於不同pH值條件下礦化p-Nitrophenol之反應動力關係探討 91
4.3.3 UV/O3程序對不同p-Nitrophenol初始反應濃度之反應動力關係探討 93
4.3.4 程序礦化p-Nitrophenol之反應動力關係彙整說明 94
第五章 結論與建議 96
5.1 結論 96
5.2 建議 100
參考文獻 101
附錄一 105
附錄二 107
表目錄
表2.1.1-1 對-硝基苯酚之基本物理化學性質 5
表2.2-1 各式氧化劑氧化能力比較表 9
表2.2-2 各種高級氧化法之自由基型態 11
表2.2.1-1 臭氧基本物理特性 13
表2.2.1-2 臭氧水解動力階數一覽表 19
表3.2.2-1 臭氧注入劑量測試結果 43
表3.2.2-2 水中臭氧濃度測試結果 43
表3.2.2-3 UV光強度量測結果 43
表3.3.1-1 實驗器材一覽表 44
表3.3.2-1 實驗藥品一覽表 46
表4.1.1-1 UV礦化p-Nitrophenol實驗結果 53
表4.1.2-1  H2O2礦化p-Nitrophenol實驗結果 55
表4.1.3-1 O3礦化p-Nitrophenol實驗結果 57
表4.1.4-1 UV/H2O2程序礦化p-Nitrophenol實驗結果 59
表4.1.5-1 O3/H2O2程序礦化p-Nitrophenol實驗結果 61
表4.1.6-1 UV/O3程序礦化p-Nitrophenol實驗結果 63
表4.1.7-1 UV/O3/H2O2程序礦化p-Nitrophenol實驗結果 65
表4.2.1-1 UV/O3程序於不同H2O2劑量之實驗結果 70
表4.2.1-1 UV/O3程序於不同H2O2劑量之實驗結果(續) 71
表4.2.1-1 UV/O3程序於不同H2O2劑量之實驗結果(續) 72
表4.2.1-2 O3程序於不同H2O2劑量之實驗結果 75
表4.2.1-2 O3程序於不同H2O2劑量之實驗結果(續) 76
表4.2.1-2 O3程序於不同H2O2劑量之實驗結果(續) 77
表4.2.2-1 不同pH值對UV/O3程序礦化p-Nitrophenol之實驗結果 80
表4.2.2-1 不同pH值對UV/O3程序礦化p-Nitrophenol之實驗結果(續) 81
表4.2.3-1 UV/O3程序對不同p-Nitrophenol初始反應濃度之實驗結果 84
表4.2.3-1 UV/O3程序對不同p-Nitrophenol初始反應濃度之實驗結果(續) 85
表4.3.1-1 UV/O3程序於不同H2O2劑量礦化p-Nitrophenol之擬一階反應常數(kobs)與相關係數(R2) 91
表4.3.2-1 UV/O3程序於不同pH值礦化p-Nitrophenol之擬一階反應常數(kobs)與相關係數(R2) 92
表4.3.3-1 UV/O3程序於不同p-Nitrophenol初始反應濃度之擬一階反應常數(kobs)與相關係數(R2) 94

圖目錄

圖2.1.1-1 p-Nitrophenol之化學結構圖 4
圖2.1.4-1 對-硝基苯酚於人體內之代謝途徑 8
圖2.2.1-1 臭氧之化學結構圖 11
圖2.2.1-2 電暈放電製造臭氧之基本原理示意圖 15
圖2.2.1-3 水中臭氧氧化化合物之直接與間接反應路徑 15
圖2.2.1-4 電偶極加成反應(Criegee mechanism)示意圖 16
圖2.2.1-5 親電性反應(Electrophilic reaction)示意圖 17
圖2.2.1-6 臭氧與芳香烴有機物(Aromatic compounds)反應示意圖 17
圖2.2.1-7 臭氧分解路徑示意圖(Staehelin et al., 1984) 18
圖2.2.1-8 臭氧自由基連鎖反應誘使者、提升者及抑制者之定義 18
圖2.2.3-1 UV光電磁頻譜(Electromagnetic Spectrum)分類圖 20
圖2.2.3-2 UV光於水中傳送之相關影響機制示意圖 22
圖2.2.4-1 UV(254 nm)裂解臭氧之反應路徑 24
圖2.2.5-1 O3/UV/H2O2系統之反應途徑 25
圖2.3-1 臭氧氧化酚之反應機制及中間產物 27
圖2.3-2 臭氧氧化1,3-苯二酚及1,3,5-苯三酚之反應路徑及中間產物 28
圖2.3-3 臭氧氧化酚之反應機制及中間產物 29
圖2.3-4 臭氧氧化2-氯酚、3-氯酚之反應機制及中間產物 30
圖2.3-5 臭氧氧化對-羥基苯甲酸之反應機制及中間產物 31
圖2.3-6 2,4-DP之氧化反應機制及中間產物 34
圖3.2.1-1 本研究之實驗儀器裝置示意圖 42
圖3.4.1-1 氣相臭氧分析儀(GM-pro) 47
圖3.4.2-1 溶臭氧分析儀(Dissolved Ozone Monitor) 48
圖3.4.3-1 UV光強度偵測示意圖 49
圖3.4.4-1 TOC分析儀(Dohrmann Phoenix 8000)分析流程圖 50
圖4.1.1-1 UV礦化p-Nitrophenol之效率 53
圖4.1.2-1 H2O2礦化p-Nitrophenol之效率 55
圖4.1.3-1 O3礦化p-Nitrophenol之效率 57
圖4.1.4-1 UV/H2O2程序礦化p-Nitrophenol之效率 59
圖4.1.5-1 O3/H2O2程序礦化p-Nitrophenol之效率 61
圖4.1.6-1 UV/O3程序礦化p-Nitrophenol之效率 63
圖4.1.7-1 UV/O3/H2O2程序礦化p-Nitrophenol之效率 65
圖4.1.8-1 不同氧化程序p-Nitrophenol礦化效率比較 66
圖4.1.8-2 不同氧化程序之p-Nitrophenol轉化率比較 67
圖4.1.8-3 不同氧化程序反應過程之pH值變化情形 68
圖4.2.1-1 UV/O3程序於不同H2O2劑量之p-Nitrophenol礦化效率 73
圖4.2.1-2 UV/O3程序於不同H2O2劑量之p-Nitrophenol轉化率 73
圖4.2.1-3 O3程序於不同H2O2劑量之p-Nitrophenol礦化效率 78
圖4.2.1-4 O3程序於不同H2O2劑量之p-Nitrophenol轉化率 78
圖4.2.2-1 UV/O3程序於不同pH值之p-Nitrophenol礦化效率 82
圖4.2.2-2 UV/O3程序於不同pH值之p-Nitrophenol轉化率 82
圖4.2.3-1 UV/O3程序對不同p-Nitrophenol初始反應濃度之礦化效率 86
圖4.2.3-2 UV/O3程序對不同p-Nitrophenol初始反應濃度之轉化率 86
圖4.3.1-1 UV/O3程序於不同H2O2劑量之p-Nitrophenol礦化速率 90
圖4.3.2-1 UV/O3程序於不同pH值之p-Nitrophenol礦化速率 92
圖4.3.2-1 UV/O3程序於不同p-Nitrophenol初始反應濃度之礦化速率 93

參考文獻 參考文獻
Agustina, T.E., Ang, H.M., Vareek, V.K. 2005. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 6(4), 264-273.
Andreozzi, R., Caprio, V., Insola, A., Marotta, R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59.
Bailey, P.S. 1978. Ozonation in Organic Chemistry. Academic Press, New York.
Beltran, F.J. 2004. Ozone reaction kinetics for water and wasterwater systems. Lewis Publishers, USA.
Benitez, F.J., BeltranHeredia, J., Acero, J.L., Gonzalez, T. 1996. Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2/UV radiation. Water Research, 30(7), 1597-1604.
Bennett, G.F. 1993. Ozone in water treatment: Application and engineering: edited by B. Langlais, D.A. Reckhow and D.R. Brink, Cooperative Research Report: American Water Works Association Research Foundation and Compagnie Général des Eaux, Lewis Publishers, Chelsea, MI, 1991, ISBN 0-87374-471-1, 569 pp. Hazardous Materials, 34(3), 393-394.
Boncz, M.A., Bruning, H., Rulkens, W.H., Sudholter, E.J.R., Harmsen, G.H., Bijsterbosch, J.W. 1997. Kinetic and mechanistic aspects of the oxidation of chlorophenols by ozone. Water Science and Technology, 35(4), 65-72.
Brillas, E., Cabot, P.L., Rodriguez, R.A., Arias, C., Garrido, J.A., Oliver, R. 2004. Degradation of the herbicide 2,4-DP by catalyzed ozonation using the O3/Fe2+/UVA system. Applied Catalysis B-Environmental, 51(2), 117-127.
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. 1988. Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (.Oh/.O-) in Aqueous-Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886.
C.P. Leslie Grady, J., Filipe, C.D.M. 1998. Biological Wastewater Treatment, Second Edition, Revised and Expanded. CRC Press.
Chen, W.S., Juan, C.N., Wei, K.M. 2007. Decomposition of dinitrotoluene isomers and 2,4,6-trinitrotoluene in spent acid from toluene nitration process by ozonation and photo-ozonation. Journal of Hazardous Materials, 147(1-2), 97-104.
Chou, M.S., Huang, B.J., Chang, H.Y. 2006. Degradation of. gas-phase propylene glycol monomethyl ether acetate by ultraviolet/ozone process: A kinetic study. Journal of the Air & Waste Management Association, 56(6), 767-776.
Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., Rodriguez, M. 2002. Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36(4), 1034-1042.
Glaze, W.H., Kang, J.W., Chapin, D.H. 1987. The Chemistry of Water-Treatment Processes Involving Ozone, Hydrogen-Peroxide and Ultraviolet-Radiation. Ozone-Science & Engineering, 9(4), 335-352.
Gottschalk, C., Libra, J.A., Saupe, A. 2009. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications. 2nd ed. Wiley-VCH.
Gulyas, H. 1997. Processes for the removal of recalcitrant organics from industrial wastewaters. Water Science and Technology, 36(2-3), 9-16.
Hoigne, J., Bader, H. 1976. Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous-Solutions. Water Research, 10(5), 377-386.
Jack D. Zeff, E.L. 1996. Oxidation of organic compounds in water.
Kinman, R.N. 1975. Water and Wastewater Disinfection with Ozone: A Critical Review. Critical Reviews in Environmental Control, 5(1), 141-152.
Ko, Y.W., Chiang, P.C., Chang, E.E. 1998. Ozonation of p-hydroxybenzoic acid solution. Ozone-Science & Engineering, 20(5), 343-360.
Kreetachat, T., Damrongsri, M., Punsuwon, V., Vaithanomsat, P., Chiemchaisri, C., Chomsurin, C. 2007. Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents. Journal of Hazardous Materials, 142(1-2), 250-257.
Kuo, C.H., Huang, C.H. 1995. Aqueous-Phase Ozonation of Chlorophenols. Journal of Hazardous Materials, 41(1), 31-45.
Kusic, H., Koprivanac, N., Bozic, A.L. 2006. Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 123(3), 127-137.
Langlais, B., Reckhow, D.A., Brink, D.R., F, A.W.W.R. 1991. Ozone in water treatment: application and engineering. CRC Press.
Laplanche, A., Lesauze, N., Martin, G., Langlais, B. 1991. Simulation of Ozone Transfer in Water - Comparison with a Pilot Unit. Ozone-Science & Engineering, 13(5), 535-558.
Legrini, O., Oliveros, E., Braun, A.M. 1993. Photochemical Processes for Water-Treatment. Chemical Reviews, 93(2), 671-698.
Lu, F.C., Kacew, S. 1996. Lu′s Basic Toxicology: Fundamentals, Target Organs and Risk Assessment. Tailer & Francis
Lucas, M.S., Peres, J.A., Puma, G.L. 2010. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Separation and Purification Technology, 72(3), 235-241.
Masschelein, W.J., Rice, R.G. 2002. Ultraviolet Light in Water and Wastewater Sanitation. Liewis Publishers.
Park, J.G., Han, J.H. 1998. The Behavior of Ozone in Wet Cleaning Chemicals. Proc. 5th Int. Symp. Cleaning Technology in Semiconductor Device Manufacturing, 231.
Peyton, G.R., Glaze, W.H. 1988. Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet-Radiation .3. Photolysis of Aqueous Ozone. Environmental Science & Technology, 22(7), 761-767.
Prengle, H.W., Mauk, C.E. 1978. New technology: ozone/UV chemical oxidation wastewater process for metal complexes, organic species and disinfection. American Institute of Chemical Engineers, 74, 288.
R.G. 1996. Ozone Reference Guide. Electric Power Research Institute., St. Louis, MO,.
Rice, R.G. 1981. Ozone for Treatment of Hazardous Materials. AICHE symposium series, 79-107.
Rice, R.G., Robson, C.M., Miller, G.W., Hill, A.G. 1981. Uses of Ozone in Drinking-Water Treatment. Journal American Water Works Association, 73(1), 44-57.
Rodriguez, J., Gagnon, S. 1991. Disinfection:liquid purification by UV radiation, and its many application. Ultrapure Water, 8-6, 26-31.
Saritha, P., Aparna, C., Himabindu, V., Anjaneyulu, Y. 2007. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. Journal of Hazardous Materials, 149(3), 609-614.
Sotelo, J.L., Beltran, F.J., Gonzalez, M. 1990. Ozonation of Aqueous-Solutions of Resorcinol and Phloroglucinol .1. Stoichiometry and Absorption Kinetic Regime. Industrial & Engineering Chemistry Research, 29(12), 2358-2367.
Staehelin, J., Buhler, R.E., Hoigne, J. 1984. Ozone Decomposition in Water Studied by Pulse-Radiolysis .2. Oh and Ho4 as Chain Intermediates. Journal of Physical Chemistry, 88(24), 5999-6004.
Staehelin, J., Hoigne, J. 1982. Decomposition of Ozone in Water - Rate of Initiation by Hydroxide Ions and Hydrogen-Peroxide. Environmental Science & Technology, 16(10), 676-681.
Tchobanoglous, G.T. 1997. UV Disinfection: An Update. Presented at Sacramento Municipal Utilities District Electrotechnology Seminar Series., Sacramento, CA.
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., d′Ischia, M. 2004. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research, 38(2), 414-422.
Wedemeyer, G.A. 1996. Physiology of Fish in Intensive Culture Systems. Chapman & Hall, London.
Zhang, H., Fei, C.Z., Zhang, D.B., Tang, F. 2007. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145(1-2), 227-232.
張家驥. 2001. 「以臭氧為基礎之高級氧化程序處理垃圾滲出水之研究」, 逢甲大學, 碩士論文.
許智豪. 2000. 「新型捲氣式反應器臭氧處理含2-硝基酚廢水之研究」, 國立台灣科技大學, 碩士論文.
黃柏仁. 2005. 「利用紫外線/臭氧處理氣相中1,3-丁二烯與乙酸甲氧基異丙酯之反應動力研究」, 國立中山大學, 博士論文.
楊幸僖. 2012. 「臭氧結合紫外光/過氧化氫程序降解水中環境荷爾蒙類物質烷基苯酚之研究」, 國立中央大學, 碩士論文.
鄧宗禹, 蔡明蒔. 2001. 「以臭氧超純水清洗晶圓表面之簡介及應用」. 毫微米通訊, 8(2), 36-46.
蘇筱婷. 2009. 「高級氧化法處理實驗室高濃度有機廢液與酚之研究」, 國立成功大學,碩士論文.


指導教授 莊銘棟 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明