博碩士論文 101383006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.117.186.92
姓名 聶若光(Jo-Kuang Nieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 冷卻速率、塑性變形與固溶溫度對SP-700鈦合金微結構與機械性質之影響
(Effect of cooling rate, plastic deformation and solution temperature on microstructure and mechanical properties of SP-700 titanium alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) SP-700鈦合金經固溶處理後,水淬合金微結構由αp (初析α) + α” (麻田散鐵) + βr (殘留β)組成,經時效處理後α”與βr會分解析出α + β平衡相,使強度與硬度大幅提升;空冷與爐冷合金由αp + α (析出相) + β (平衡相)組成,硬度較水淬合金高,經時效後微結構形貌較無變化,強度僅小幅提升。水淬合金於拉伸過程發生「應力誘發麻田散鐵」相變化,使得水淬合金同時具有高強度、高延性與低降伏強度。
本研究針對SP-700 鈦合金經固溶、淬火冷卻後施以不同冷加工量,再進行時效處理,藉由顯微結構與機械性質分析,探討不同微結構下之拉伸變形特性。結果顯示SP-700鈦合金經固溶、水淬後,合金微結構為塊狀初析α相 (αp)、β殘留相 (βr)及散佈於βr之針狀麻田散鐵相(α”)所構成;若水淬合金施以冷加工,殘留β相 (βr)將因應力誘發麻田散鐵相變化而數量減少,相變化為較硬脆之針狀麻田散鐵相(α”),冷加工量愈高,針狀麻田散鐵相 (α”)就愈密集和細緻。
水淬合金進行拉伸試驗時,除了具有低降服強度外,且因應力誘發麻田散鐵現象,以致淬火合金顯現高強度增幅與高延性。然而水淬合金經冷加工與時效處理後,其微結構相較未加工之合金更為細緻,會大幅提高降服強度,但強度增幅與延性均極為有限。
摘要(英) The relationship between the microstructures and the mechanical properties of solution-treated SP-700 titanium alloys, as obtained with different cooling rates, was investigated. The results indicate that the water-quenched alloy contains the primary α (αp), α”-martensite and residual β (βr) phases. Aging heat treatment can convert both α”-martensite and the βr phases to the fine-grained α + β equilibrium phases, resulting in a significant increase in tensile strength and hardness. Both the air-cooled and furnace-cooled alloys consist of the αp, α and β phases. The air-cooled alloy containing the fine-grained α phase has relatively higher hardness. Aging heat treatment causes only a slight enhancement in tensile properties because it cannot convert the phases in both alloys. Stress-induced martensitic phase transformation occurs in the water-quenched alloy under applied stress, after which the alloy exhibits higher tensile strength, higher ductility, and lower yield strength.
This study investigates the effects of cold working prior to aging on the microstructure and mechanical properties of SP-700 titanium alloy. The results indicate that the microstructure of the quenched alloy comprises blocky primary α, retained β, and acicular α” martensite distributed in the β matrix. The retained β is transformed to denser and finer brittle acicular martensite α” by stress-induced martensitic transformation and the quantity of retained β decreases with higher degrees of cold working. The quenched alloy exhibits not only low yield strength, but the stress-induced martensite leads to a distinct increase in strength with good ductility. Plastic deformation prior to the aging treatment produces a great increase in the yield strength due to refinement of the precipitate microstructure, leading to the ratio of strength increment and ductility being very low.
關鍵字(中) ★ SP-700鈦合金
★ 應力誘發麻田散鐵
★ 熱處理
★ 微結構
★ 機械性質
關鍵字(英)
論文目次 中文摘要 Ⅰ
英文摘要 Ⅲ
總目錄 Ⅴ
圖目錄 IX
表目錄 XIV
第一章、前言
1.1鈦合金簡介與分類 1
1.1.1純鈦 4
1.1.2 α型合金 5
1.1.3 α+β型合金 6
1.1.4 β型鈦合金 7
1.2 SP-700鈦合金之簡介 10

第二章、文獻回顧與理論基礎 12
2.1鈦合金熱處理 12
2.1.1退火 12
2.1.2析出熱處理 13
2.2α+β型鈦合金熱處理 13
2.1.1熱處理溫度高於麻田散轉換溫度(Ms) 16
2.1.2熱處理溫度略低於麻田散轉換溫度(Ms) 17
2.1.3熱處理溫度低於麻田散轉換溫度(Ms) 18
2.3鈦合金麻田散體相變化 18
2.4康氏準則(considere′s criterion) 20
2.5冷加工對於鈦合金之影響 23
2.6鈦合金之衝擊韌性 25
2.7 研究動機與目的 28

第三章、實驗步驟與方法 30
3.1合金材料 31
3.2析出熱處理 31
3.3冷軋延與設備 31
3.4微結構觀察與分析 32
3.4.1光學顯微鏡 (Optical Microscopy, OM) 32
3.4.2掃瞄式電子顯微鏡 (Scanning Electron Microscope, SEM) 32
3.4.3 XRD分析33
3.4.4電子微探儀(Electron probe X-ray microanalysis, EPMA) 33
3.4.5微差掃描分析儀 (Differential Canning Calorimetry) 34
3.5機械性質測試 34
3.5.1硬度試驗 34
3.5.2拉伸試驗 34
3.5.3衝擊試驗 35

第四章、結果與討論 37
4.1冷卻速率對SP-700鈦合金微結構與機械性質之影響 37
4.1.1微結構分析 37
4.1.1.1固溶處理後水淬之微結構分析 37
4.1.1.2固溶處理後空冷之微結構分析 43
4.1.1.3固溶處理後爐冷之微結構分析 47
4.1.2微差熱掃描儀(DSC)分析 51
4.1.3機械性質測試 53
4.1.3.1固溶處理後水淬、空冷、爐冷對硬度之影響 55
4.1.3.2固溶處理後水淬、空冷、爐冷對拉伸性質之影響 57
4.1.4 結論 61
4.2熱處理與塑性變形對SP-700 鈦合金微結構與機械性質之影響--62
4.2.1微結構分析 62
4.2.1.1塑性變形對固溶熱處理微結構之影響 62
4.2.1.2塑性變形對時效熱處理微結構之影響 68
4.2.2塑性變形對時效析出動力之影響 72
4.2.3塑性變形對機械性質之影響 74
4.2.4結論 80
4.3固溶溫度對SP-700鈦合金微結構及機械性質之影響 81
4.3.1微結構分析 81
4.3.2機械性質測試 91
4.3.3 SP-700鈦合金應用板材之評估與建議 100
4.3.4結論 101

第五章、總結論 103

References 106
參考文獻 [ASTM1] ASTM E8/E8M-11, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA (2004)
[ASTM2] ASTM E23-12C, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA (2004)
[Attallah] M. M. Attallah, S. Zabeen, R. J. Cernik, M. Preuss, ”Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron microscopy”, Materials Characterization 60, pp.1248-1256 (2009)
[Banerjee] Dipankar Banerjee, J.C. Williams, “Perspectives on Titanium Science and Technology”, Acta Materialia, Vol. 61, pp.844-879 (2013)
[Boyer1] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.685 (1994)
[Boyer2] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.490 (1994)
[Boyer3] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys,” ASM International, p.11 (1994)
[Brewer] W. D. Brewer, R. K. Bird, T. A. Wallace, “Titanium Alloys and processing for high speed aircraft”, Materials Science and Engineering A, Vol.243, pp.299-304 (1998)
[Brooks1] C. R. Brooks, Heat treatment, Structure and Properties of Nonferrous Alloys, Metals Park (OH): ASM International, p.329 (1982)
[Brooks2] C.R. Brooks, Nonferrous Alloys, American Society for Metals (1984)
[Chesnutt] J. C. Chesnutt, C. G. Rhodes, J. C. Williams, ”Relationship Between Mechanical Properties, Microstructure, and Fracture Topography in α+β Titanium Alloys”, Fractography-Microscopic Cracking Processes, ASTM STP 600, American Society for Testing and Materials, pp.99-138 (1976)
[Cui] C. X Cui, B. M. Hu, L. C. Zhao, S. H. Liu, “Titanium Alloy Production Technology, Market Prospects and industry development ”, Materials and Design 32, pp.1684-1691 (2011)
[Davis] J. R. Davis (EDs), “Metals handbook:Titanium and Titanium alloys”, Materials Park (OH) : ASM International, p.575 (1998)
[Donachie] M. J. Donachie, “Titanium and Titanium Alloys”, Metal Park, ASM International, p.43 (1982)
[Grosdidier] T. Grosdidier, M. J. Philippe, “Deformation induced martensite and superelasticity in a β-metastable titanium alloy”, Materials Science & Engineering A, Vol. 291, pp.218–223 (2000)
[Gunawarman] Gunawarman, Mitsuo Niinomi, Kei-ichi Fukunaga, Daniel Eylon, Shiro Fujishiro, Chiaki Ouchi, “Fracture Characteristics And Microstructural Factors In Single And Duplex Annealed Ti-4.5Al-3V-2Mo-2Fe”, Material Science & Engineering A, Vol. 308, pp.216-224 (2001)
[Hall] I. Hall and C. Hammond, “Relation between crack propagation characteristics and fracture toughness in α+β titanium alloys,” In R. Jaffee(ed.), Plenum, New York, Titanium Science and Technology, Vol. 2, p. 1365 (1973)
[Ishikawa] M. Ishikawa, O. Kuboyama, H. Niikura and C. Ouchi, in: F.H. Froes (Ed.), Titanium’92, science and technology, TMS, Warrendale, PA, USA, pp.142–148 (1992)
[Kao] Y.L. Kao, G.C. Tu, C.A. Huang, T.T.Liu, “A Study on the Hardness variation of α- and β-pure titanium with different grain sizes,” Material Science & Engineering A (2005) pp. 93-98
[Leyens] C. Leyens and M. Peters, “Titanium and Titanium alloys: Fundamentals and Applications”
[Lutjering] G. Lutjering, J.C. Williams, Titanium, 2nd ed., Berlin: Springer, p.175 (2007)
[Lyasotskaya] V. S. Lyasotskaya, S. I. Knyazeva, “Metastable Phases In Titanium Alloys And Conditions of Their Formation,” Metal Science & Heat Treatment, pp. 373-377 (2008)
[Mantani] Yoshikazu Mantani, Yoshito Takemoto, Moritaka Hida, Akira Sakakibara, Mamoru Tajima,” Phase Transformation of α” Martensite Structure by Aging in Ti-8 mass% Mo Alloy”, Materials Transactions Vol.45, No.5, pp.1629-1634 (2004)
[Niinomi1] M. Niinomi, I. Inagaki, and T. Kobayashi: Mat. Sci. Tech., 4, p.803 (1988)
[Niinomi2] M. Niinomi, T. Kobayashi, I. Inagaki, A. W. Thompson, “The effect of deformation-induced transformation on the fracture toughness of commercial titanium alloys,” Metallurgical Transactions A, Vol. 21A, No. 6, pp.1733-1744 (1990)
[Ogawa] A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, M. Yamada, “Development and applications of titanium alloy SP-700 with high formability”, Journal of Testing and Evaluation, Vol.24, pp.100-109 (1996)
[Ohmori] Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, “Effects of ω-phase precipitation on β→α, α” transformations in a metastable β titanium alloy, ” Materials Science and Engineering A 312, 182-188 (2001)
[Ouchi1]C. Ouchi, in: S. Fujishiro, D. Eyloy and T. Kishi (Eds.), Metallurgy and Technology of Practical Titanium Alloys, TMS, Warrendale, PA, USA, pp. 37–44 (1994)
[Ouchi2] Chiaki Ouchi, Hideaki Fukai, Kohei Hasegawa, “Microstructural Characteristic And Unique Properties Obtained By Solution Treating Or Aging in β-rich α+β Titanium Alloy”, Material Science & Engineering A, Vol. 263, pp.132-136 (1999)
[Polmear] I. J. Polmear, Light Alloys: Metallurgy of the Light Metals, fourth edition, p.354 (2006)
[Reda] Reham Reda, Adel A. Nofal, Abdel‐Hamid A. Hussein, “Effect of Quenching Temperature on the Mechanical Properties of Cast Ti‐6Al‐4V Alloy,” Journal of Metallurgical Engineering, Vol. 2, No. 1, pp.48-54 (2013)
[Reed-Hill1] Robert E. Reed-Hill, Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, p.706 (1994)
[Reed-Hill2] R. E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, p.158 (1994)
[Sha] W. Sha, Z. L. Guo, “Phase evolution of Ti–6Al–4V during continuous heating,” Journal of Alloys and Compounds, Vol. 290, L3-L7 (1999)
[Smith] William F. Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill Inc., p.433-486 (1993)
[WIL] J.C. Williams and J.J. Blackburn, Trans. ASM,Vol. 60, p.381 (1967)
[Zherebtsova] Sergey Zherebtsova , Gennady Salishcheva, Witold Łojkowski, “Strengthening of a Ti–6Al–4V titanium alloy by means of hydrostatic extrusion and other methods”, Materials Science & Engineering A515, pp.43-48 (2009)
指導教授 李勝隆 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明