博碩士論文 101383010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:44.192.253.106
姓名 胡智愷(Chih-Kai, Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
(Numerical Verification for Prediction of Gallium Nitride Thin Film Growth)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究★ 以OES光譜進行ECR-CVD太陽電池用氫化氧化矽薄膜製成分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究建立一套藍光LED磊晶製程的簡化機制。先以零維反應器模型求解,接著再以二維反應器模型求解其應用於實際機台的沉積率,並跟實際製程做比對驗證。目標是做出一套可於實際工業界應用的輔助系統。
起初先建立氮化鎵之金屬有機化學氣相沉積反應機制,以零維反應器模型求解。探討不同操作參數對鍍膜製程之影響。目標是在一般的運算主機中探用此機制可以在製程前獲得參考的解,減少不必要的氣體浪費。利用物種生成速率分析(Rate-of-production Analysis),探討不同操作參數對鍍膜製程之影響。接著再更進一步的去掉環狀結構假設以及加合物假設得到依氣相反應僅一條的最精簡機制,並與原先複雜機制以及文獻數計比對,發現大大的不但縮短運算時間之外,同時在藍光製程溫度區仍有不錯的精準度。
接著跟文獻以及實際業界提供的參數比對,發現本研究所建立的模型可有效地探討金屬有機化學氣相沉積中複雜的化學反應機制,在此小節中分成立式腔體和水平腔體分別比對,發現不管是哪一種腔體,在藍光製程高溫區都有不錯的準確度。
最後為了跟實際上的Showhead比對,經過模型的換算後,由工業技術研究院提供的數據比對,發現化簡機制的模型計算結果與工研院提供的實驗數據吻合。未來期許應用於實際業界機台的人機介面上。用同樣的方法可以去快速篩選一個化學反應的機制,本研究提供的不僅僅是一個結果,也期許將此觀念擴散到業界,提高國內製程良率以及競爭力。
摘要(英) A numerical procedure was performed to simplify the complicated mechanism of an epitaxial thin-film growth process. In this study, three numerical mechanism models are presented for verifying the growth rate of the gallium nitride (GaN) mechanism. The mechanism models were developed through rate of production analysis.
All of the results can be compared in one schematic diagram, and the differences among these three mechanisms are pronounced at high temperatures. The simplified reaction mechanisms were then used as input for a two-dimensional computational fluid dynamics code FLUENT, enabling the accurate prediction of growth rates. Validation studies are presented for two types of laboratory-scale reactors (vertical and horizontal).
A computational study including thermal and flow field was also performed to investigate the fluid dynamic in those reactors. For each study, the predictions agree acceptably well with the experimental data, indicating the reasonable accuracy of the reaction mechanisms.
Futhermore, a verification procedure and the effects of operating conditions in a large, vertical, and close-spaced reactor for metalorganic chemical vapor deposition are investigated through simulation and analysis. A set of epitaxy experiments are presented for verifying the growth rate of the gallium nitride (GaN) mechanism reported in our previous study.
The full governing equations for continuity, momentum, energy, and chemical reaction are solved numerically. The results show that the real operating parameters (susceptor temperature: 1188℃or 1238℃; pressure: 100–300 torr) affect thin-film uniformity, and the predicted growth rates agree reasonably well with the experimental data (Provided by ITRI, Taiwan), indicating the accuracy of the projected chemical reaction mechanisms.
關鍵字(中) ★ MOCVD
★ LED
★ Epitaxy
★ Numerical
★ Modeling
★ Simulation
關鍵字(英)
論文目次 中文摘要 . v
Abstract vi
致謝 . vii
圖目錄 . xi
表目錄 xv
符號說明 . xvi
第一章、背景 . 1
1-1. 前言 1
1-2. 研究動機 . 3
1-3. 參考文獻 . 5
1-4. 研究內容及目的 11
第二章、沉膜腔體及理論介紹 13
2-1. MOCVD 簡介 . 13
2-1-1. 磊晶概述 . 13
2-1-2. MOCVD 磊晶系統 14
2-2. 薄膜沉積理論 22
2-2-1. 薄膜沉積過程 . 22
2-2-2. 化學氣相沈積 . 24
2-3. 金屬有機化學氣相沈積 . 27
第三章、研究理論 29
3-1. 研究流程 29
3-2. 零維模型數值理論 . 31
3-2-1. 零維模型概述 . 31
3-3. 二維模型數值理論 . 38
3-3-1. MOCVD 反應腔系統機制分析 . 38
3-3-2. 相關條件假設闡述 41
3-3-3. 動量傳輸 . 41
3-3-4. 熱能傳遞 . 42
3-3-5. 質量傳輸 . 42
3-3-6. 輸送性質 . 43
3-3-6. 自然對流尺度參數 44
3-3-7. 統御方程式 44
3-4. 二維模型理論 : 控制方程的通用形式 . 47
3-5. CFD的求解過程 49
3-6. FLUENT的軟體結構 的軟體結構 53
3-6-1.FLUENT的運算結構 的運算結構 . 53
3-7. 控制方程離散法介紹 55
3-7-1. 離散化的介紹 . 55
3-7-2. 有限體積法介紹 56
3-8. 流場數值方法介紹 . 62
3-8-1. 流場數值計算的主要方法 62
3-8-2. SIMPLE算法介紹 算法介紹 . 64
3-9. 有限速率模型介紹 . 69
第四章、研究成果 71
4-1. 氮化鎵模型研究 71
4-1-1. 完整模型研究 (Complete Model) 71
4-1-2. 各參數對鍍膜速率的影響 80
4-2. 簡化模型 1(Reduced Model) 89
4-2-1. 文獻氮化鎵反應模型之ROP 分析 89
4-3. 簡化模型 2 (New Model) 94
4-3-1.文獻氮化鎵之 反應模型ROP分析 94
4-4. 二維模型文獻比對 . 104
4-4-1. 軟體介面紹跟參數輸入說明 104
4-4-2. 二維模型的跟文獻比對及探討 111
4-5. 二維模擬跟實驗比對 127
第五章、未來工作 . 134
參考文獻 135
參考文獻 參考文獻
[1] C. Chen, H. Liu, D. Steigerwald, W. Imler, C. Kuo and M. Craford, “A study of parasitic reactions between NH3 and TMGa or TMAI”, Journal of Electronic Materials, Vol. 25, pp. 1004-1008, October 1996.
[2] C. Theodoropoulos, T. J. Mountziaris, H. K. Moffat and J. Han, “Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy”, Journal of Crystal Growth, Vol. 217, p. 65, July 2000.
[3] D. Sengupta, S. Mazumder, W. Kuykendall, S. A. Lowry, D. Sengupta, and S. Mazumder, “Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth,” Journal of Crystal Growth, Vol. 279, pp. 369-372, June 2005.
[4] T. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth., Massachusetts Institute of Technology, Deptartment of Chemical Engineering, Commonwealth of Massachusetts, 1999.
[5] T. K. Seki Y, Lida K and Ichiki E, “Properties of epitaxial GaAs layers from a Triethylgallium and Arsine system”, Journal of Electrochemical Society, Vol. 122, pp. 1108-1112, April 1975.
[6] A. T. D. Mazzarese, W.C. Conner, K.A. Jones, L. Calderon and D.W. Eckart, “In situ FTIR and surface analysis of the reaction of trimethylgallium and ammonia”, Journal of Electronic Materials, Vol. 18, pp. 369-372, December 1989.
[7] A. Hirako, K. Kusakabe and K. Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2: System: A Computational Fluid Dynamics Simulation Study”, Japanese Journal of Applied Physics, Vol. 44, pp. 874-880, February 2005.
[8] R. P. Parikh, R. A. Adomaitis, R. P. Parikh and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, Journal of Crystal Growth, Vol. 286, pp. 259-262, January 2006.
[9] G. Evans and R. Greif, “Effect of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor”, Numerical Heat Transfer, Vol. 12, pp. 243-252, February 1987.
[10] G. Evans and R. Greif, “A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor”, Journal of Heat Transfer, Vol. 109, pp. 928-935, October 1987.
[11] I. FOTIADIS, Anthony MKREMER, Donald R. McKENNA and Klavs F. JENSEN, “Complex flow phenomena in vertical MOCVD reactors: effect on deposition uniformity and interface abruptness”, Journal of Crystal Growth, Vol.85, pp. 154-164, November 1987.
[12] A. H. Dilawari and J. SZEKELY, “Computed results for the deposition rates and transport phenomena for an MOCVD system with a conical rotating substrate”, Journal of Crystal Growth, Vol.97, pp. 777-791, October 1987.
[13] S. Patnaik and R. A. Brown, “Hydrodynamic dispersion in rotating-disk OMVPE reactors: Numerical simulation and experimental measurements”, Journal of Crystal Growth, Vol. 108, pp. 491-498, May 1988.
[14] F. Durst and L. Kadinskii, “Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver”, Journal of Crystal Growth, Vol. 125, pp. 612-626, July 1991.
[15] G. W. Young, S. I. Hariharan and R. Carnahan, “Flow effects in a vertical CVD Reactor”, Journal on Applied Mathematics, Vol.52, pp. 1509-1532, December 1992.
[16] W. Y. Chung, D. H. Kim and Y. S. Cho, “Modeling of Cu Thin Film Growth by MOCVD Process in a Vertical Reactor”, Journal of Crystal Growth, Vol. 180, pp 691-697, October, 1997.
[17] S. Joh and G. H. Evans, “Heat Transfer and Flow Stability in a Rotating Disk/Stagnation Flow Chemical Vapor Deposition Reactor”, Numerical Heat Transfer, Part A: Applications, Vol. 31, pp. 867-879, August 1997.
[18] D. W. Weyburne and B. S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor”, Journal of Crystal Growth, Vol. 170, pp. 77-82, January 1997.
[19] T. G. Mihopoulos, “Simulation of flow and growth phenomena in a close-spaced reactor”, Journal of Crystal Growth, Vol. 195, pp. 725-732, January 2000.
[20] A. G. Mathews and J. E. Peterson, “Flow Visualizations and Transient Temperature Measurements in an Axisymmetric Impinging Jet Rapid Thermal Chemical Vapor Deposition Reactor”, Journal of Heat Transfer, Vol. 124, pp. 564-570, May 2002.
[21] C. Park, J. Y. Hwang, M. Huang and T. J. Anderson, “Investigation of an Up Flow Cold-Wall CVD Reactor by Gas Phase Raman Spectroscopy”, Thin Solid Films, Vol. 409, pp. 88-97, March 2002.
[22] H. V. Santen, C. R. Kleijn, E. A. Harry and V. D. Akker, “On Turbulent Flow in Cold-Wall CVD Reactor”, Journal of Crystal Growth, Vol. 212, pp. 299-310, January 2000.
[23] G. Luo, S. P. Vanka and N. Glumac, “Fluid Flow and Transport Processes in A Large Area Atmospheric Pressure Stagnation Flow CVD Reactor for Deposition of Thin Films”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 4979-4994, August 2004.
[24] B. Mitrovic, A. Gurary and L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under awide range of process parameters”, Journal of Crystal Growth, Vol. 287, pp. 656–663, December 2005.
[25] B. Mitrovic, A. Parekh and J. Ramer, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors”, Journal of Crystal Growth, Vol. 289, pp. 708-714, February 2006.
[26] B. Mitrovic, Alex Gurary and William Quinn, “Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling”, Journal of Crystal, Vol. 303, pp. 323-329, January 2007.
[27] ZHONG ShuQuan, “Numerical studies on flow and thermal fields in MOCVD reactor”, Chinese Science Bulletin, Vol. 55, pp. 560-566, February 2009.
[28] C. H. Lin and W. T. Cheng, “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling”, International Communications in Heat and Mass Transfer, Vol. 36, pp. 680-685, April 2009.
[29] R. R. Saxena, V. Aebi, C. B. Cooper, M. J. Ludowise, H. A. Vander Plas, B. R. Cairns, T. J. Maloney, P. G. Borden, and P. E. Gregory “High-efficiency GaAlAs concentrator solar cells by MOCVD”, Journal Applied Physics, Vol. 51, pp. 4501-4503, July 1980.
[30] S. Nakamura, M, Senoh and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers”, The Japan Society of Applied Physics, Vol. 30, pp. L1708-L1711, August 1991.
[31] K. M. Amano H, Hiramatsu K, Akasaki I, "P-type conduction in Mg-doped GaN treted with low-energy electron beam irradiation”, Japanese Journal of Applied Physics, Vol. 28, pp. L2112-L2114, November 1989.
[32] 盧勁甫,「高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析」,中央大學,碩士論文,2015。
[33] 陸大成,段樹坤,金屬有機化合物氣相外延基礎與應用,科學出版社,一版, 北京,2009。
[34] A. G. Thompson, “MOCVD technology for semiconductors”, Journal of Materials letters, Vol. 30, pp. 255-263, May 1996.
[35] A. G. B. Mitrovic and L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol. 287, pp. 656-663, December 2005.
[36] E. J. T. M. Dauelsberg, B. Schineller and J. Kaeppeler, Technology of MOVPE Production Tools., Elsevier Ltd, London, 2004.
[37] 林義鈞,「最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究」,國立中央大學,碩士論文,2013。
[38] 張政彬,「以數值分析法優化MOCVD高溫反應腔體之二段加熱系統暨實作驗證」,國立中央大學,碩士論文,2016。
[39]何國鴻,「金屬有機化學氣相沉積反應腔體承載盤熱流場之數值分析與實作驗證」,國立中央大學,碩士論文,2015。
[40]邱顯智,「以數值分析法優化MOCVD高溫反應腔體之加熱系統暨實作驗證」,國立中央大學,碩士論文,2015。
[41] 陳桂芳,「MOCVD高溫加熱系統之熱擋板數值分析與實作驗證」, 國立中央大學,碩士論文,,2017。
[42] X. Hong,半導體製程技術導論,羅正忠,張鼎張,三版,台灣培生教育出版股份有限公司,臺北,2007。
[43] 郭哲瑋, 「最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析」, 國立中央大學,碩士論文,2014。
[44]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[45] C. Theodoropoulos, N. Ingle, T. Mountziaris, Z. Y. Chen, P. Liu and G. Kioseoglou, “Kinetic and transport modeling of the metallorganic chemical vapor deposition of InP from trimethylindium and phosphine and comparison with experiments”, Journal of The Electrochemical Society, Vol. 142, pp. 2086-2094, March 1995.
[46] N. Ingle, C. Theodoropoulos, T. Mountziaris, R. Wexler and F. Smith, “Reaction kinetics and transport phenomena underlying the low-pressure metalorganic chemical vapor deposition of GaAs”, Journal of Crystal Growth, Vol. 167, pp. 543-556, March 1996.
[47] M. Masi, C. Cavallotti, G. Radaelli and S. Carra, “Kinetics of indium phosphide epitaxial growth using metal organic precursors”, Crystal Research and Technology, Vol. 32, pp. 1125-1136, April 1997.
[48] I. T. Im, H. J. Oh, M. Sugiyama, Y. Nakano and Y. Shimogaki, “Fundamental kinetics determining growth rate profiles of InP and GaAs in MOCVD with horizontal reactor”, Journal of Crystal Growth, Vol. 261, pp. 214-224, December 2004.
[49] A. Hirako, “Analysis of TMGa/NH3/H2 reaction system in GaN-MOVPE growth by computational simulation”, Physical States Solid, Vol. 203, pp. 1716-1719, May 2006.
[50] T. Uchida, K. Kusakabe and K. Ohkawa, “Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN”, Journal of Crystal Growth, Vol. 304, pp. 133-140, February 2007.
[51] B. C. Sakiadis, “Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface”, AIChE Journal, Vol. 7, pp. 221-225, June 1961.
[52] ANSYS, Inc., ANSYS FLUENT 12.0, Theory Guide, Canonsburg, 2009.
[53] C. K. Hu, C. J. Chen, T. C. Wei, Tomi T. Li, C. C. Wang and C. Y. Huang, “Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis” Coatings, Vol. 7, pp.1-23, March 2017.
[54] 朱紅鈞,林元華,謝龍漢,Fluent流體分析及仿真實用教程,一版,人民郵電出版社,北京,2010。
[55] 王福軍,計算流體動力學分析: CFD軟體原理與應用,一版,清華大學出版社,北京,2004。
[56] S. V. Patankar, Numerical heat transfer and fluid flow, USA, Minnesota, 1980.
[57] C. Hirsch, Numerical Computation of Internal & External Flows. Volume 1, USA, 2007.
[58] 陶文銓,數值熱傳學,二版,西安交通大學出版社,西安,2001
[59] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows”, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806, October 1972.
[60] S. Y. Karpov, "Advances in the Modeling of MOVPE Processes," Journal of Crystal Growth, Vol. 248, pp. 1-7, November 2003.
[61] S. A. Safvi and J. M. Redwing,“GaN Growth by Metallorganic Vapor Phase Epitaxy”, Journal of The Electrochemical Society, Vol. 144, pp. 1789-1796. May 1997.
指導教授 利定東 審核日期 2017-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明