博碩士論文 101388001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.133.108.241
姓名 林昶嶸(Chang-Rong Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究
(The Study of Efficiency Enhancement for White Light Organic Light-Emitting Diodes and CH3NH3PbI3 Perovskite Solar Cells via Nano-Patterned Substrate)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 快速熱退火之石墨烯特性分析★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中是藉由調整溶膠-凝膠法的參數,製作出不同粒徑的二氧化矽(SiO2)小球,並將SiO2小球應用於有機發光二極體(OLED, Organic Light-Emitting Diode)與有機鈣鈦礦太陽能電池(PSC, Organic-inorganic Halide Perovskite Solar Cell),成功地提升了OLED與PSC的元件效率。
在OLED的研究中,我們結合單層小球鋪排技術以及乾蝕刻製程,所發展出的小球微影製程技術來製備圖案化銦錫氧化物(ITO)玻璃基板(PIS, Patterned ITO Substrate),並以此PIS製作出高出光效率的白光OLED。此外,藉由選擇單層鋪排時使用的小球粒徑,可製作出三種不同週期的PIS OLEDs (PIS-300 OLED、PIS-500 OLED與PIS-1000 OLED)。透過模擬結果與一系列的實驗分析可知,PIS OLEDs其元件效率的表現皆高於Planar OLED (對照組),且效率表現與PIS OLED的週期成反比。與Planar OLED相較之下,在注入元件之電流密度固定為20 mA/cm2時結構週期最小的PIS-300 OLED之操作電壓可下降約36%;此外當元件輝度值為5,000 cd/m2時,PIS-300 OLED之發光效率與外部量子效率可分別增益約228%及58%。
於PSC的研究中,我們利用奈米級圖案化氟參雜氧化錫(FTO)玻璃基板(NPFS, Nano-patterned FTO Substrate),製作出以甲胺三碘鉛酸鹽(CH3NH3PbI3)為吸光層的高效率PSC元件。研究中我們利用單層小球鋪排技術,配合小球曝光微影製程技術,可製作出三種不同深度的NPFS-PSCs (100 nm、150 nm與200 nm)。經由光學上與電性上的分析結果可知,NPFS-PSCs不僅能增加鈣鈦礦層的吸光量,也能透過FTO與電子傳輸層之間增加的接觸面積提高電子萃取率。與對照組的Planar-PSC相較之下,FTO蝕刻深度為200 nm的NPFS-PSC其光電流密度可由19.27 mA/cm2提升至23.81 mA/cm2,且能量轉換效率可由14.21%增益至17.85%。由上述的結果可知,將NPFS應用在CH3NH3PbI3係的PSC元件中能不僅能同時提升光捕捉率與電子萃取率,也為高效率的PSC提供了可靠且嶄新的研究方向。
摘要(英) In this study, we have synthesis the SiO2 sphere with variable diameters by tuning the recipes of sol-gel method, and successfully improve the efficiency via incorporating the spheres into an organic light-emitting diode (OLED) and an organic-inorganic halide perovskite solar cell (PSC).
In terms of OLED, the output power enhancement of the white light OLED was demonstrated on a patterned indium tin oxide substrate (PIS) prepared via sphere lithography technique which consists of self-assembled monolayer SiO2 spheres and dry etching process. Herein, three different periods of PIS OLEDs (PIS-300 OLED, PIS-500 OLED and PIS-1000 OLED) were fabricated by selecting the diameter of deposited SiO2 spheres. Through simulation results and a series of experimental analyses, PIS OLEDs present better device performance than a Planar OLED (Control Sample), and the device performance was inversely proportional to the structural period of the PIS OLED. Compared with the planar OLED, the operating voltage of the PIS-300 OLED with smallest structural period of 300 nm was reduced 36% at an injection current density of 20 mA/cm2. Consequently, the luminous efficiency and external quantum efficiency of PIS-300 OLED can statically enhanced 228% and 58% at the luminance of 5,000 cd/m2.
In terms of PSC, a CH3NH3PbI3-based perovskite solar cell (PSC) with high power conversion efficiency (PCE) has achieved by incorporating a nano-patterned fluorine-doped tin oxide (FTO) substrate (NPFS). This NPFS-PSC was prepared with different structural depths (100 nm, 150 nm, and 200 nm) using both self-assembly and sphere lithography techniques. As determine through the optical and electrical analysis of different PSC devices, the NPFS-PSCs not only display the enhanced light absorption (due to the two-dimensional diffraction grating) but also improve the electron collection efficiency by increasing the FTO/electron transport layer (ETL) and ETL/perovskite effective interface. Compared to a planar PSC (Control Sample), the photocurrent density of the 200-nm-etched NPFS-PSC is enhanced from 19.27 mA/cm2 to 23.81 mA/cm2 leading to an increase in the power conversion efficiency from 14.21% to 17.85%. These results indicate that introducing the NPFS into the CH3NH3PbI3-based PSC can improve both light harvesting and electron extraction efficiency and, therefore, represents a novel, promising, high-performance photovoltaic device.
關鍵字(中) ★ 有機發光二極體
★ 有機鈣鈦礦太陽能電池
★ 奈米圖案化基板
關鍵字(英) ★ Organic light emitting diode
★ Perovskite solar cell
★ Nano patterned substrate
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xviii
第1章 研究背景 1
1.1. 有機發光二極體 2
1.1.1 外取光增益OLED元件效率 8
1.1.2. 內取光增益OLED元件效率 14
1.2. 有機鈣鈦礦太陽能電池 24
1.3. 研究動機與目的 53
第2章 實驗方法 55
2.1. 奈微米球之製造與單層鋪排製程 55
2.2. 具有圖案化ITO結構之OLED元件製作 56
2.2.1. 圖案化ITO基板製作 57
2.2.2. OLED元件有機薄膜層及金屬電極沉積 58
2.3. 具有圖案化FTO結構之PSC元件製作 61
2.3.1. 圖案化FTO基板製作 62
2.3.2. PSC元件製作 63
第3章 模擬方法 66
3.1. 時域有限差分法 66
3.2. 有限差分法 68
3.3. OLED元件光電特性模擬 70
3.3.1. PIS OLED光萃取率模擬 71
3.3.2. PIS OLED內部電場分佈模擬 72
3.4. PSC元件光學模擬 75
3.4.1. 奈微米球聚光現象模擬 76
3.4.2. NPFS-PSC之吸收光譜模擬 77
第4章 奈微米結構基板增益OLED元件之研究結果與討論 80
4.1.單層鋪排奈微米球之SEM觀察 80
4.2. PIS與PIS OLED之SEM觀察 81
4.3. OLED元件量測結果與討論 85
4.4. OLED元件之效率增益探討 87
4.4.1. 電極面積與發光面積增加 88
4.4.2. 週期性結構對光萃取率的改善 89
4.4.3. OLED元件內部電場的局部增益效果 92
第5章 奈米結構基板增益PSC元件之研究結果與討論 94
5.1.小球聚焦之模擬與實驗 94
5.1.1.小球聚焦現象探討 94
5.1.2.具有圖案化光阻結構之FTO基板 97
5.2. NPFS與NPFS-PSC之SEM觀察 99
5.3. PSC元件量測結果與討論 102
5.4. NPFS-PSC元件之效率增益探討 105
5.4.1. 週期性結構對LHE的改善 105
5.4.2. 電極面積與接觸面積增加之效益 110
第6章 結論 116
參考文獻 120
發表文獻 132
參考文獻 [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, p. 913, 1987.
[2] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. M. Kay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, p. 539, 1990.
[3] K. Saxenaa, D. S. Mehtab, V. K. Raia, R. Srivastavaa, G. Chauhana, M. N. Kam., “Implementation of anti-reflection coating to enhance light out-coupling in organic light-emitting devices,” J. of Lumin., vol. 128, p. 525, 2008.
[4] B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes ans D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater., vol. 13, p. 123, 2001.
[5] J. Wang, C. Wang and Y. Jiang, “To enhance light extraction for organic light-emitting diodes by body modification of substrate,” Int. J. Photoenergy, vol. 2013, p. 649564, 2014.
[6] Q. D. Qu, L. H. Xu, W. Y. Zhang, Y. Q. Li, Y. B. Zhang, X. D. Zhao, J. D. Chen and J. X. Tang, “Light outcoupling enhanced flexible organic light-emitting diodes,” Opt. Express, vol. 24, p. A674, 2016.
[7] J. J. Shiang and A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys., vol. 95, p. 2880, 2004.
[8] Y. S. Tyan, J. D. Shore, G. Farruggia and T. R. Cushman, “Broadband-emitting microcavity-OLED device,” Proc. SID’05, Boston, Massachusetts, USA, p.142, 2005.
[9] C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, “Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission,” Appl. Phys. Lett., vol. 90, p. 211109, 2007.
[10] C. F. Madigan, M. H. Lu and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett., vol. 76, p. 1650, 2000.
[11] H. Peng, Y. L. Ho, X. J. Yu, M. Wong and H. S. Kwok, “Coupling efficiency enhancement in organic light emitting devices using microlens array theory and experiment,” IEEE-OSA J. Display Tech., vol. 2, p. 278, 2005.
[12] S. H. Eom, E. Wrzesniewski, J. Xue, “Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices,” Org. Electron. vol. 12, p. 472, 2011.
[13] F. Galeotti, W. Mróz, G. Scavia and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron., vol. 14, p. 212, 2013.
[14] J. Y. Kim, C. W. Joo, J. Lee, J. C. Woo, J. Y. Oh, N. S. Baek, H. Y. Chu and J. I. Lee, “Save energy on OLED lighting by simple yet powerful technique,” RSC Adv., vol. 5, p. 8415, 2015.
[15] T. W. Koh, J. A. Spechler, K. M. Lee, C. B. Arnold and B. P. Rand, “Enhanced outcoupling in organic light-emitting diodes via a high-index contrast scattering layer,” ACS Photon., vol. 2, p. 1366, 2015.
[16] M. C. Suh, B. Pyo, B. W. Lim and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron., vol. 38, p. 316, 2016.
[17] Y. J. Wang, J. G. Lu and H. P. D. Shieh, “Efficiency enhancement of organic light-emitting diodes on flexible substrate with patterned inverted conical structure,” IEEE Photon. J., vol. 8, p. 1600108, 2016.
[18] L. Ding, L. W. Wang, L. Zhou and F. H. Zhang, “Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity,” Appl. Surf. Sci., vol. 389, p. 990, 2016.
[19] F. Dumur, S. Reculusa, M. Mruczkiewicz, M. Perrin, L. Vignau and S. Fasquel, “Multilayer Langmuir-Blodgett films as diffractive external 3D photonic crystal in blue OLEDs,” Opt. Express, vol. 24, p. 27184, 2016.
[20] G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng and S. T. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica, vol. 4, p. 678, 2017.
[21] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photon., vol. 4, p. 222, 2010.
[22] Kumar, R. Srivastava, M. N. Kamalasanan and D. S. Mehta, “Enhancement of light extraction efficiency of organic light emitting diodes using nanostructured indium tin oxide,” Opt. Lett., vol. 37, p. 575, 2012.
[23] S. Choi, S. M. Lee, M. S. Lim, K. C. Choi, D. Kim, D. Y. Jeon, Y. Y. and O. O. Park, “Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography,” Opt. Express, vol. 20, p. A309, 2012.
[24] S. Jeon, J. H. Lee, J. H. Jeong, Y. S. Song, C. K. Moon, J. J. Kim and J. R. Youn, “Vacuum nanohole array embedded phosphorescent organic light emitting diodes”, Sci. Rep., vol. 5, p. 8685, 2015.
[25] C. W. Joo, J. W. Shin, J. Moon, J. W. Huh, D. H. Cho, J. Lee, S. K. Park, N. S. Cho, J. H. Han, H. Y. Chu and J. I. Lee, “Highly efficient white transparent organic light emitting diodes with nano-structured substrate,” Org. Electron., vol. 29, p. 72, 2016.
[26] T. B. Lim, K. H. Cho, Y. H. Kim and Y. C. Jeong, “Enhanced light extraction efficiency of OLEDs with quasiperiodic diffraction grating layer,” Opt. Express, vol. 24, p. 17950, 2016.
[27] Y. Zhao, F. Yun, Y. Huang, Z. Wu, Y. Li, B. Jiao, L. Feng, S. Li, W. Ding and Y. Zhang, “Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities,” Appl. Phys. Lett., vol. 109, p. 013303, 2016.
[28] S. Yuan, Y. Hao, Y. Miao, Q. Sun, Z. Li, Y. Cui, H. Wang and B. Xu, “Enhanced light out-coupling efficiency and reduced efficiency roll-off in phosphorescent OLEDs with a spontaneously distributed embossed structure formed by a spin-coating method,” RSC Adv., vol. 7, p. 43987, 2017.
[29] L. Wang, Y. Luo, X. Feng, Y. Pei, B. Lu and S. Cheng, “Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes,” AIP Adv., vol. 8, p. 055030, 2018.
[30] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, p. 676, 1954.
[31] K. Bothe and J. Schmidt, “Electronically activated boron-oxygen-related recombination centers in crystalline silicon,” J. Appl. Phys., vol. 99, p. 013701, 2006.
[32] A. Wang, J. Zhao, and M. A. Green, “24% efficient silicon solar cells,” Appl. Phys. Lett., vol. 57, p. 602, 1990.
[33] M. Emziane, K. Durose, D. P. Halliday, A. Bosio and N. Romeo, “Role of substrate and transparent conducting oxide in impurity evolvement in polycrystalline thin-film devices,” Appl. Phys. Lett., vol. 87, p. 251913, 2005.
[34] T. Buonassisi et al, “Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells,” Appl. Phys. Lett., vol. 87, p. 121918, 2005.
[35] U. Dutta, P. Chatterjee, S. Tchakarov, M. Uszpolewicz and P. Roca i Cabarrocas, “Metastable defect migration under high carrier injection in hydrogenated amorphous silicon p-i-n solar cells.” J. Appl. Phys., vol. 98, p. 044511, 2005.
[36] S. Y. Myong, K. S. Lim and J. M. Pears, “Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells,” Appl. Phys. Lett., vol. 87, p. 193509, 2005.
[37] E. L. Williams, G. E. Jabbour, Q. Wang, S. E. Shaheen, D. S. Ginley and E. A. Schiff, “Conducting polymer and hydrogenated amorphous silicon hybrid solar cells,” Appl. Phys. Lett., vol. 87, p. 223504, 2005.
[38] D. Shvydka, J. Drayton, A. D. Compaan and V. G. Karpov, “Piezo-effect and physics of CdS-based thin-film photovoltaics,” Appl. Phys. Lett., vol. 87, p. 123505, 2005.
[39] F. H. Seymour, V. Kaydanov, T. R. Ohno and D. Albin, “Cu and CdCl2 influence on defects detected in CdTe solar cells with admittance spectroscopy,” Appl. Phys. Lett., vol. 87, p. 153507, 2005.
[40] J. A. M. AbuShama, S. W. Johnston, R. S. Crandall and R. Noufi, “Meyer-Neldel rule and the influence of entropy on capture cross-section determination in Cu (In,Ga) Se2 ,” Appl. Phys. Lett., vol. 87, p. 123502, 2005.
[41] B. O′Regan and M. Graetzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, p. 737, 1991.
[42] W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. J. Milliron, A. P. Alivisatos and K. W. J. Barnham, “Charge transport in hybrid nanorod-polymer composite photovoltaic cells,” Phys. Rev. B, vol. 67, p. 115326, 2003.
[43] T. S. Fisher and D. G. Walker, “Thermal and electrical energy transport and conversion in nanoscale electron field emission processes,” J. Heat Transfer, vol. 24, p. 954, 2002.
[44] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, p. 6050, 2009.
[45] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, vol. 3, p. 4088, 2011.
[46] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep., vol. 2, p. 591, 2012.
[47] M. Liu, M. B. Jonhston and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, p. 395, 2013.
[48] Y. Zhao and K. Zhu, “Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition,” J. Am. Chem. Soc., vol. 136, p.12241, 2014.
[49] M. J. Carnie, C. Charbonneau, M. L. Davides, J. Troughton, T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, “A one-step low temperature processing route for organolead halide perovskite solar cells,” Chem. Commun., vol. 49, p. 7893, 2013.
[50] Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-step solution growth of CH3NH3PbI3-structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C, vol. 118, p. 9412, 2014.
[51] D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel and A. Hagfelde, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Adv., vol. 3, p. 18762, 2013.
[52] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, p. 316, 2013.
[53] Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu and N. P. Padture, “Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells,” J. Mater. Chem. A, vol. 3, p. 8187, 2015.
[54] C. Y. Chan, Y. Wang, G. W. Wu, W. G. Diau, “Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors,” J. Mater. Chem. A, vol. 4, p. 3872, 2016.
[55] W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science, vol. 347, p. 522, 2015.
[56] D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith and D. S. Ginger, “Impact of microstructure on local carrier lifetime in perovskite solar cells,” Science, vol. 348, p. 683, 2015.
[57] W. Li, J. Fan, J. Li, Y. Mai and L. Wang, “Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%,” J. Am. Chem. Soc., vol. 137, p. 10399, 2015.
[58] G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan and G. Fang, “Interface engineering in planar perovskite solar cells-energy level alignment, perovskite morphology control and high performance achievement,” J. Mater. Chem. A, vol. 5, p. 1658, 2017.
[59] K. G. Lim, S. Ahn, Y. H. Kim, Y. Qi and T. W. Lee, “Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic-inorganic hybrid perovskite solar cells,” Energy Environ. Sci., vol. 9, p. 932, 2016.
[60] J. Peng, Y. Wu, W. Ye, D. A. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H. T. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M. N. Lockrey, K. J. Weber, K. R. Catchpole and T. P. White, “Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis,” Energy Environ. Sci., vol. 10, p. 1792, 2017.
[61] A. J. Pearson, G. E. Eperon, P. E. Hopkinson, S. N. Habisreutinger, J. T. W. Wang, H. J. Snaith and N. C. Greenham, “Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells kinetics and mechanisms,” Adv. Energy Mater., vol. 6, p. 1600014, 2016.
[62] M. I. Ahmed, Z. Hussain, M. Mujahid, A. N. Khan, S. S. Javaid and A. Habib, “Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells,” AIP Adv., vol. 6, p. 065303, 2016.
[63] E. Nouri, M. R. Mohammadi and P. Lianos, “Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers,” Carbon, vol. 126, p. 208, 2018.
[64] J. Cao, H. Yu, S. Zhou, M. Qin, T. K. Lau, X. Lu, N. Zhao and C. P. Wong, “Low-temperature solution-processed NiOx films for air-stable perovskite solar cells,” J. Mater. Chem. A, vol. 5, p. 11071, 2017.
[65] K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu and T. Ma, “Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells,” J. Phys. Chem. Lett., vol. 6, p. 755, 2015.
[66] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, p. 643. 2012.
[67] H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, p. 6196, 2014.
[68] Y. Z. Zheng, E. F. Zhao, F. L. Meng, X. S. Lai, X. M. Dong, J. J. Wu and X. Tao, “Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24%,” J. Mater. Chem. A, vol. 5, p. 12416, 2017.
[69] J. Song, E. Zheng, X. F. Wang, W. Tian and T. Miyasaka, “Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells,” Sol. Energy Mater. Sol. Cells, vol. 144, p. 623, 2016.
[70] X. Yu, S. Chen, K. Yan, X. Cai, H. Hu, M. Peng, B. Chen, B. Dong, X. Gao and D. Zou, “Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds,” J. Power Sources, vol. 325, p. 534, 2016.
[71] S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh and S. I. Seok, “Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells,” Science, vol. 356, p. 167, 2017.
[72] X. Wang, L. L. Deng, L. Y. Wang, S. M. Dai, Z. Xing, X. X. Zhan, X. Z. Lu, S. Y. Xie, R. B. Huang and L. S. Zheng, “Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature,” J. Mater. Chem. A, vol. 5, p. 1706, 2017.
[73] A. Kogo, M. Ikegami and T. Muyasaka, “A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature,” Chem. Commun., vol. 52, p. 8119, 2016.
[74] E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S. H. Turren-Cruz, J. Seo, J. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Grätzel, A. Hagfeldt and J. P. Correa-Baena, “Low-temperature Nb-doped SnO2 electron selective contact yields over 20% efficiency in planar perovskite solar cells,” ACS Energy Lett., vol. 3, p. 773, 2018.
[75] M. M. Tavakoli, K. H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li and Z. Fan, “Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures,” ACS Nano, vol. 9, p. 10287, 2015.
[76] M. Josť, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovsěk, J. Krc, L. Korte, D. Neher, B. Rech and M. Topic, “Efficient light management by textured nanoimprinted layers for perovskite solar cells,” ACS Photon., vol. 4, p. 1232, 2017.
[77] A. Peer, R. Biswas, J. M. Park, R. Shinar and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express, vol. 9, p. 10704, 2017.
[78] U. W. Paetzold, W. Qin, F. Finger, J. Poortmans and D. Cheyns, “Nanophotonic front electrodes for perovskite solar cells,” Appl. Phys. Lett., vol. 106, p. 173101, 2015.
[79] S. M. Kang, S. Jang, J. K. Lee, J. Yoon, D. E. Yoo, J. W. Lee, M. Choi and N. G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small, vol. 12, p. 2443, 2016.
[80] H. Zhang, M. Kramarenko, J. Osmond, J. Toudert and J. Martorell, “Natural random nanotexturing of the Au interface for light backscattering enhanced performance in perovskite solar cell,” ACS Photon., vol. 5, p. 2243, 2018.
[81] J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, and G. Fang, “Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer”, Appl. Phys. Lett., vol. 106, p. 121104, 2015.
[82] J. Choi, S. Song, M. T. Hörantner, H. J. Snaith and T. Park, “Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells,” ACS Nano, vol. 10, p. 6029, 2016.
[83] J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung and M. Choi, “Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes-towards future foldable power sources,” Energy Environ. Sci., vol. 10, p. 337, 2017.
[84] Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li and Y. Song, “Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping,” Adv. Energy Mater., vol. 8, p. 1702960, 2018.
[85] M. T. Hörantner, W. Zhang, M. Saliba, K. Wojciechowski and H. J. Snaith, “Templated microstructural growth of perovskite thin films via colloidal monolayer lithography,” Energy Environ. Sci., vol. 8, p. 2041, 2015.
[86] X. Zheng, Z. Wei, H. Chen, Q. Zhang, H. He, S. Xiao, Z. Fan, K. S. Wong and S. Yang, “Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells,” Nanoscale, vol. 8, p. 6393, 2016.
[87] N. Aeineh, E. M. Barea, A. Behjat, N. Sharifi and I. Mora-Seró, “Inorganic surface engineering to enhance perovskite solar cell efficiency,” ACS Appl. Mater. Interfaces, vol. 9, p. 13181, 2017.
[88] Q. Luo, X. Deng, C. Zhang, M. Yu, X. Zhou, Z. Wang, X. Chen and S. Huang, “Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings,” Solar Energy, vol. 169, p. 128, 2018.
[89] C. K. Huang, C. Y. Chen, J. L. Han, C. C. Chen, M. D. Jiang, J. S. Hsu, C. H. Chan and K. H. Hsieh, “Immobilization of silver nanoparticles on silica microspheres,” J. Nanopart. Res., vol. 12, p. 199, 2010.
[90] C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C Lee, Y. L. Tsai and C. C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett., vol. 95, p. 133105, 2009.
[91] C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate,” Appl. Phys. Lett., vol. 95, p. 011110, 2009.
[92] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao and W. J. Wang, “Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation,” Phys. Stat. Sol., vol. 5, p. 1215, 2008.
[93] F. Steuber, J. Staudigel, M. Stossel and J. Simmerer, “Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode,” Appl. Phys. Lett, vol. 74, p. 3558, 1999.
[94] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propag., vol. 14, p. 302, 1966.
[95] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. of Comput. Phys., vol. 114, p. 185, 1994.
[96] J. W. Kim, J. H. Jang, M. C. Oh, J. W. Shin, D. H. Cho, J. H. Moon and J. I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express, vol. 22, p. 498, 2014.
[97] A. M. Winslow, “Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh,” J. of Comput. Phys., vol. 2, p. 149, 1967.
[98] M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett, vol. 85, p. 5769, 2004.
[99] Y. H. Ho, K. Y. Chen, K. Y. Peng, M. C. Tsai, W. C. Tian and P. K. Wei, “Enhanced light out-coupling of organic light-emitting diode using metallic nanomesh electrodes and microlens array,” Opt. Express, vol. 7, p. 8535, 2013.
[100] X. Jing and Y. Jin, “Transmittance analysis of diffraction phase grating,” Appl. Opt., vol. 50, p. C11, 2011.
[101] Q. Guo, H. Sun, J. Wang, D. Yang, J. Chen and D. Ma, “Charge generation mechanism of tandem organic light emitting diodes with pentacene/C70 organic heterojunction as the connecting layer,” J. Mater. Chem. C, vol. 4, p. 376, 2016.
[102] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Y. Jen and W. C. H. Choy, “Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility,” ACS Nano, vol. 10, p. 1503, 2016.
[103] Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li and H. Han, “The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell,” J. Mater. Chem. A, vol. 3, p. 9103, 2015.
[104] Y. Wang, W. Y. Rho, H. Y. Yang, T. Mahmoudi, S. Seo, D. H. Lee and Y. B. Hahn, “Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3-NiO nanoparticles composite,” Nano Energy, vol. 27, p. 535, 2016.
[105] K. Wang, C. Liu, P. Du, J. Zheng and X. Gong, “Bulk heterojunction perovskite hybrid solar cells with large fill factor,” Energy Environ. Sci., vol. 8, 1245, 2015.
[106] D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu and C. Li, “High efficiency flexible perovskite solar cells using superior low temperature TiO2,” Energy Environ. Sci., vol. 8, 3208, 2015.
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2018-11-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明