博碩士論文 101389002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:123 、訪客IP:18.118.150.80
姓名 黎蕙瑛(Hui-Ying Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
(Li+-Storage Performance of SnO2/Graphene, CoCO3/Graphene Composites Synthesized Using Supercritical CO2 Fluid and Na+-Storage Performance of Bilayer V2O5 Synthesized Using Anodic Deposition)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 第一部份旨在研究超臨界流體合成SnO2/graphene nanosheets (GNS)的電化學特性。相比於在空氣下合成的SnO2/GNS,利用超臨界二氧化碳(SCCO2)合成出SnO2/GNS的複合材能夠均勻分散在石墨烯上,且原本堆疊的石墨烯易被SCCO2撐開,並在層與層之間沉積SnO2,避免石墨烯堆疊回去。當流體密度增加時,黏滯度上升、擴散速度變慢,SnO2的沉積部分分散、部分聚集。而在注入SCCO2前將反應腔體進行抽真空,有助於SnO2緊密排列形成一網狀骨架。且在電性表現上,以抽真空條件的SnO2/GNS有最高電性表現,在100 mA g−1電流密度下可達到~800 mAh g−1的初始放電電容值,在6000 mA g−1高速下,可得到475 mAh g−1放電電容值,不論是在低速還是在高速表現上,皆優於未抽真空製得的SnO2/GNS的電容值。
第二部份利用SCCO2作為前驅物合成CoCO3/GNS複合材,並應用於鋰離子電池與鈉離子電池。利用SCCO2的特性(類氣體的擴散性、極低黏滯度、接近於零的表面張力),CoCO3粒子可以均勻且緊密分散在GNS上。相比於一般的合成方法,利用SCCO2反應溫度僅需50 ºC、反應時間僅需2小時,大幅減少合成過程中所消耗的能源及成本。利用SCCO2可合成出極小的CoCO3奈米粒子(~20 nm),且具備獨特的多孔狀結構,增加了電極活性位置、利於電解液滲入、較短的擴散路徑、舒緩在充放電過程中產生的應變。CoCO3/GNS不僅可逆電容值可達1105 mAh g−1,也展現了絕佳的高速充放電能力(7.5 min內達745 mAh g−1)及良好的循環壽命(200圈充放電後保有98%電容維持率)。
第三部份在利用電化學法沉積出具有雙層排列的V2O5,並應用於鈉離子電池。電極製備過程中不需添加其他導電劑、黏著劑,即可直接沉積在基材上。在添加NaCH3COO的VOSO4鍍液中沉積之V2O5可改善氧化物沉積在基材上的均勻性。在本實驗中改變釩氧化物的沉積電位,並探討不同的電位對表面形貌、結構、電化學性質的影響。利用FESEM觀察其表面形貌,在低電位下沉積之V2O5具有多孔狀的結構,而當沉積電位提高時,V2O5表面會越來越緻密,直到水的分解電位發生才會在表面形成較大的孔洞。利用XRD分析得知,沉積出來的V2O5並不會隨沉積電位不同而改變其結構,且具有非常大的層間距,約11.6 Å,足以提供比Li+還大的Na+進出。而在放電電容值、不同定電流充放電、循環壽命等儲鈉特性表現上,以在最低沉積電位出來的V2O5具有最好的表現,在20 mA g−1的定電流值下,可達到220 mAh g−1之放電電容值,且以50 mA g−1的定電流充放電之500圈循環壽命測試上,仍可達到92%的壽命維持率。
摘要(英)
Supercritical CO2 (SCCO2) fluid, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, is used to synthesize SnO2 nanoparticles (a 3-nm diameter is achievable), which are uniformly dispersed and tightly anchored on graphene nanosheets (GNSs). Comparatively, the conventional process (in the absence of SCCO2) produces aggregated SnO2 clusters. This study also tunes the SCCO2 pressure (and thus its fluid density) and vacuum the autoclave before injecting into CO2. The results show that these factors crucially affect the distribution of the produced SnO2 nanoparticles on GNSs, determining the resulting electrochemical properties. Increasing the pressure leads to an enhancement of SCCO2 density (and viscosity), decreasing the transport of SnO2 precursors through out the sample. On the other hand, vacuuming the autoclave before injecting into CO2, the SnO2 particle decoration density on GNSs increased. The discharge capacity, rate capability, and cyclic stability of the synthesized SnO2/GNS nanocomposites are compared. The SnO2/GNS electrode which synthesized during the vacuum process has the best electrochemical performance, which can deliver ~800 mAh g−1 at 100 mA g−1 and retain 60% of this of this capacity when the rate was increased to 6000 mA g−1.
An eco-efficient synthesis route of high-performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (SCCO2) as the precursor, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (~20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g−1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it is able to deliver 745 mAh g−1 in 7.5 min. More than 98% of the initial capacity can be retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3-based electrodes for Li+ storage, indicating the merit of our SCCO2 synthesis, which is facile, green, and easily scaled up for mass production.
Nanocrystalline V2O5 with a bilayer structure is directly grown on a steel substrate electrochemically in VOSO4-based solution as a cathode for sodium-ion batteries. No complicated slurry preparation procedure, involving polymer binder and conducting agent additions, is needed for this electrode synthesis. The incorporation of NaCH3COO in the VOSO4 solution promotes oxide growth and improves oxide film uniformity. The interlayer distance between two-dimensional V2O5 stacks in the structure is as large as ~11.6 Å, which is favorable for accommodating Na+ ions. The growth potential is critical to determine the oxide architectures and thus the corresponding Na+ storage properties (in terms of capacity, high-rate capability, and cycling stability). An optimal charge–discharge capacity of 220 mAh g1 is achieved for V2O5 grown in an activation-controlled potential region (i.e., 0.8 V vs. an Ag/AgCl reference electrode). This V2O5 electrode shows only 8% capacity decay after 500 cycles.
關鍵字(中) ★ 鋰離子電池
★ 二氧化錫
★ 五氧化二釩
★ 碳酸鈷
★ 鈉離子電池
★ 超臨界二氧化碳
關鍵字(英) ★ Li-ion battery
★ SnO2
★ V2O5
★ CoCO3
★ Na-ion battery
★ supercritical CO2
論文目次
摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 xi
圖目錄 xiii
一、前言 1
二、超臨界流體合成SnO2/石墨烯奈米片複合材之儲鋰特性研究 4
2-1文獻回顧 5
2-1-1 鋰離子電池 5
2-1-1-1 鋰離子電池正極材料 6
2-1-1-2 鋰離子電池負極材料 11
2-1-2 超臨界流體 15
2-1-2-1 超臨界二氧化碳製備複合材之優點 18
2-1-3 二氧化錫(SnO2) 25
2-1-3-1 奈米結構對於SnO2電性之影響 25
2-1-3-2 石墨烯對SnO2電性表現之影響 26
2-1-3-3 超臨界流體製備SnO2複合材於儲能元件應用 28
2-1-3-4 不同的流體密度對複合材製備的影響 31
2-1-3-5 於真空環境下製備對材料特性影響 36
2-2 實驗方法 40
2-2-1 二氧化錫與石墨烯複合材電極製備 40
2-2-1-1 二氧化錫與石墨烯複合材之製備 40
2-2-1-2 二氧化錫與石墨烯複合材之電極塗佈 40
2-2-2 電極材料特性分析 41
2-2-2-1 表面形貌與結構觀察 41
2-2-2-2 結晶結構分析 41
2-2-2-3 碳含量分析 41
2-2-3 電化學特性評估 41
2-2-3-1 定電流充放電 42
2-2-3-2 循環伏安曲線(cyclic voltammetry, CV) 42
2-2-3-3 交流阻抗(electrochemical impedance spectroscopy, EIS) 42
2-3 結果與討論 43
2-3-1 SnO2/GNS複合材之結晶結構 43
2-3-2 SnO2/GNS複合材之表面形貌 43
2-3-3 SnO2/GNS複合材之碳含量分析 44
2-3-4 SnO2/GNS複合材電極之電化學特性 45
2-4 小結 64
2-5 參考文獻 65
三、超臨界流體合成CoCO3/石墨烯奈米片複合材之儲鋰特性研究 73
3-1 文獻回顧 74
3-1-1 金屬碳酸物(MCO3) 74
3-1-1-1 金屬碳酸物與金屬氧化物電性比較 81
3-1-1-2 金屬碳酸物之間的電性比較 87
3-1-1-3 碳酸鈷於鋰離子電池之電性表現 91
3-2 實驗方法 96
3-2-1 碳酸鈷與石墨烯複合材之製備 96
2-2-1-1 碳酸鈷與石墨烯複合材之製備 96
2-2-1-2 碳酸鈷與石墨烯複合材之電極塗佈 96
3-2-2 電極材料特性分析 96
3-2-2-1 表面形貌與結構觀察 96
3-2-2-2 結晶結構分析 97
3-2-2-3 碳含量分析 97
3-2-2-4 化學組成分析 97
3-2-3 電化學特性評估 98
3-2-3-1 定電流充放電 98
3-2-3-2 循環伏安曲線(cyclic voltammetry, CV) 98
3-2-3-3 交流阻抗(electrochemical impedance spectroscopy, EIS) 98
3-3 結果與討論 99
3-3-1 CoCO3/GNS複合材之結晶結構 99
3-3-2 CoCO3/GNS複合材電極之碳含量分析 100
3-3-3 CoCO3/GNS複合材之表面形貌 100
3-3-4 CoCO3/GNS複合材電極之化學組成分析 101
3-3-5 CoCO3/GNS複合材電極之電化學特性 102
3-4 小結 131
3-5 參考文獻 132
四、陽極沉積層狀V2O5之儲鈉特性研究 142
4-1文獻回顧 143
4-1-1鈉離子電池 143
4-1-1-1 鈉離子電池正極材料 144
4-1-1-2 鈉離子電池負極材料 156
4-1-2 釩氧化物 161
4-1-2-1 材料特性 161
4-1-2-2 製備方式 162
4-1-2-3 結構對V2O5電化學性質之影響 169
4-2 實驗方法 177
4-2-1 釩氧化物電極製備 177
4-2-1-1 電極基材前處理 177
4-2-1-2 陽極沉積釩氧化物 177
4-2-2 電極材料特性分析 178
4-2-2-1 表面形貌與結構觀察 178
4-2-2-2 結晶結構分析 178
4-2-2-3 化學組成分析 178
4-2-3 電化學特性評估 179
4-2-3-1 定電流充放電 179
4-3 結果與討論 180
4-3-1 掃描動電位與定電位沉積 180
4-3-2 釩氧化物電極的形貌 181
4-3-3 釩氧化物電極的結晶結構 181
4-3-4 釩氧化物電極的化學組成與其價數 182
4-3-5 釩氧化物電極之電化學特性 183
4-4 小結 197
4-5 參考文獻 198
五、結論與展望 206
參考文獻
[1] C. Liu, Z. G. Neale, G. Cao, “Understanding electrochemical potentials of cathode materials in rechargeable batteries”, Mater. Today, 2016, 19, 109.
[2] N. Nitta, F. Wu, J. T. Lee, G. Yushin, “Li-ion battery materials: present and future”, Mater. Today, 2015, 18, 252.
[3] S. T. Myung, K. Amine, Y. K. Sun, “Nanostructured cathode materials for rechargeable lithium batteries”, J. Power Sources, 2015, 283, 219.
[4] X. Fan, Y. Zhu, C. Luo, T. Gao, L. Suo, S. C. Liou, K. Xu, C. Wang, “In situ lithiated FeF3/C nanocomposite as high energy conversionreaction cathode for lithium-ion batteries”, J. Power Sources, 2016, 307, 435.
[5] C. Wu, Y. Xie, “Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving”, Energy Environ. Sci., 2010, 3, 1191.
[6] S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, “Review on recent progress of nanostructured anode materials for Li-ion batteries”, J. Power Sources, 2014, 257, 421.
[7] V. Aravindan, Y. S. Lee, S. Madhavi, “Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes”, Adv. Energy Mater., 2015, 5, 1402225.
[8] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries”, Energy Environ. Sci., 2011, 4, 2682.
[9] W. Wei, Z. Wang, Z. Liu, Y. Liu, L. He, D. Chen, A. Umar, L. Guo, J. Li, “Metal oxide hollow nanostructures: Fabrication and Li storage performance”, J. Power Sources, 2013, 238, 376.
[10] Y. Deng, C. Fang, G. Chen, “The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review”, J. Power Sources, 2016, 304, 81.
[11] W. Leitner, “Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis”, Acc. Chem. Res., 2002, 35, 746.
[12] X. Zhang, S. Heinonen, E. Levänen, “Applications of supercritical carbon dioxide in materials processing and synthesis”, RSC Adv., 2014, 4, 61137.
[13] T. Adschiri, Y. W. Lee, M. Goto, S. Takami, “Green materials synthesis with supercritical water”, Green Chem., 2011, 13, 1380.
[14] G. Brunner, “Applications of Supercritical Fluids”, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 321.
[15] R. Sui, P. Charpentier, “Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids”, Chem. Rev., 2012, 112, 3057.
[16] D. Rangappa, I. Honma (2011). Nanocrystal, book edited by Yoshitake Masuda, ISBN 978-953-307-199-2, DOI: 10.5772/16428
[17] M. K. Devaraju, Q. D. Truong, T. Tomai, I. Honma, “Supercritical fluid methods for synthesizing cathode materials towards lithium ion battery applications”, RSC Adv., 2014, 4, 27452.
[18] D. Sanli, S. E. Bozbag, C. Erkey, “Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations”, J Mater Sci, 2012, 47, 2995.
[19] M. C. Bubalo, S. Vidović, I. R. Redovniković, S. Jokić, “Green solvents for green technologies”, J. Chem. Technol. Biotechnol., 2015, 90, 1631.
[20] Y. Wang, C. Zhou, W. Wang, Y. Zhao, “Preparation of Two Dimensional Atomic Crystals BN, WS2, and MoS2 by Supercritical CO2 Assisted with Ultrasound”, Ind. Eng. Chem. Res., 2013, 52, 4379.
[21] G. An, N. Na, X. Zhang, Z. Miao, S. Miao, K. Ding, Z. Liu, “SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery”, Nanotechnol., 2007, 18, 435707.
[22] L. Zhuo, Y. Wu, L. Wang, J. Ming, Y. Yu, X. Zhang, F. Zhao, “CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries”, J. Mater. Chem. A, 2013, 1, 3954.
[23] L. Zhuo, Y. Wu, W. Zhou, L. Wang, Y. Yu, X. Zhang, F. Zhao, “Trace Amounts of Water-Induced Distinct Growth Behaviors of NiO Nanostructures on Graphene in CO2‑Expanded Ethanol and Their Applications in Lithium-Ion Batteries”, ACS Appl. Mater. Interfaces 2013, 5, 7065−7071.
[24] L. Wang, L. Zhuo, C. Zhang, F. Zhao, “Embedding NiCo2O4 Nanoparticles into a 3DHPC Assisted by CO2‑Expanded Ethanol: A Potential Lithium-Ion Battery Anode with High Performance”, ACS Appl. Mater. Interfaces 2014, 6, 10813.
[25] X. Hu, M. Ma, M. Zeng, Y. Sun, L. Chen, Y. Xue, T. Zhang, X. Ai, R. G. Mendes, M. H. Rümmeli, L. Fu, “Supercritical Carbon Dioxide Anchored Fe3O4 Nanoparticles on Graphene Foam and Lithium Battery Performance”, ACS Appl. Mater. Interfaces 2014, 6, 22527.
[26] L. Wang, L. Zhuo, C. Zhang, F. Zhao, “Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium-Storage Performance”, Chem. Eur. J. 2014, 20, 4308.
[27] Z. Jiang, D. Zhang, Y. Li, H. Cheng, M. Wang, X. Wang, Y. Bai, H. Lv, Y. Yao, L. Shao, Y. Huang, “One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes”, Appl. Surf. Sci., 2014, 317, 486.
[28] L. Wang, L. Zhuo, C. Zhang, F. Zhao, “Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries”, J. Power Sources, 2015, 275, 650.
[29] Y. Xia, R. Fang, Z. Xiao, L. Ruan, R. Yan, H. Huang, C. Liang, Y. Gan, J. Zhang, X. Tao, W. Zhang, “Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries”, RSC Adv., 2016, 6, 69764.
[30] K. Li, S. Yan, Z. Lin, X. Dai, P. Qu, “Preparation and lithium ion batteries properties of SnS2 nanoparticle/reduced graphene oxide nanosheet nanocomposites using supercritical carbon dioxide”, Synthetic Met., 2016, 217, 138.
[31] S. H. Lee, S. Park, M. Kim, D. Yoon, C. Chanthad, M. Cho, J. Kim, J. H. Park, Y. Lee, “Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode”, Sci. Rep., 2016, 6, 32011.
[32] M. T. Lee, C. Y. Fan, Y. C. Wang, H. Y. Li, J. K. Chang, C. M. Tseng, “Improved supercapacitor performance of MnO2–graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid”, J. Mater. Chem. A, 2013, 1, 3395.
[33] J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C. Y. Su, J. K. Chang, “High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes”, Nano Energy, 2016, 28, 124.
[34] Z. Jian, B. Zhao, P. Liu, F. Li, M. Zheng, M. Chen, Y. Shib, H. Zhou, “Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries”, Chem. Commun., 2014, 50, 1215.
[35] J. S. Chen, X. W. (David) Lou, “SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries”, Small, 2013, 9, 1877.
[36] Y. Wang, Z. X. Huang, Y. Shi, J. I. Wong, M. Ding, H. Y. Yang, “Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries”, Sci. Rep., 2015, 5, 9164.
[37] Z. P. Guo, G. D. Du, Y. Nuli, M. F. Hassan, H. K. Liu, “Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries”, J. Mater. Chem., 2009, 19, 3253.
[38] J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, “Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries”, J. Mater. Chem., 2009, 19, 1859.
[39] P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, M. K. Sunkara, “Hybrid Tin Oxide Nanowires as Stable and High Capacity Anodes for Li-Ion Batteries”, Nano Lett., 2009, 9, 612.
[40] C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Z. Jiang, “Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity”, J. Am. Chem. Soc., 2010, 132, 46.
[41] Z. Wang, L. Zhou, X. W. (David) Lou, “Metal Oxide Hollow Nanostructures for Lithium-ion Batteries”, Adv. Mater., 2012, 24, 1903.
[42] J. Liang, W. Wei, D. Zhong, Q. Yang, L. Li, L. Guo, “One-Step In situ Synthesis of SnO2/Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries”, ACS Appl. Mater. Interfaces, 2012, 4, 454.
[43] J. Zhang, L. Chang, F. Wang, D. Xie, Q. Su, G. Du, “Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries”, Mater. Res. Bull., 2015, 68, 120.
[44] W. Li, D. Yoon, J. Hwang, W. Chang, J. Kim, “One-pot route to synthesize SnO2-Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries”, J. Power Sources, 2015, 293, 1024.
[45] J. M. DeSimone, “Practical Approaches to Green Solvents”, Science, 2002, 297, 799.
[46] H. Duan, D. Wang, Y. Li, “Green chemistry for nanoparticle synthesis”, Chem. Soc. Rev., 2015, 44, 5778.
[47] M. McHugh, V. Krukonis, H. Brenner, Supercritical fluid extraction: principles and practice. 2nd ed., Stoneham: Butterworth-Heinemann. 1994.
[48] L. T. Taylor, Supercritical Fluid Extraction, John Wiley and Sons, Inc. 1996.
[49] E. Alonso, I. Montequi, S. Lucas, M. J. Cocero, “Synthesis of titanium oxide particles in supercritical CO2: Effect of operational variables in the characteristics of the final product”, J. Supercrit. Fluids, 2007, 39, 453.
[50] C. A. Barrett, A. Singh, J. A. Murphy, C. O’Sullivan, D. N. Buckley, K. M. Ryan, “Complete Synthesis of Germanium Nanocrystal Encrusted Carbon Colloids in Supercritical CO2 and their Superhydrophobic Properties”, Langmuir, 2011, 27, 11166.
[51] T. Lu, S. Blackburn, C. Dickinson, M. J. Rosseinsky, G. Hutchings, S. Axon, G. A. Leeke, “Production of titania nanoparticles by a green process route”, Powder Technol., 2009, 188, 264.
[52] Y. Zhang, H. Jiang, Y. Wang, M. Zhang, “Synthesis of Highly Dispersed Ruthenium Nanoparticles Supported on Activated Carbon via Supercritical Fluid Deposition”, Ind. Eng. Chem. Res. 2014, 53, 6380.
[53] W. B. Hua, S. N. Wang, X. D. Guo, S. L. Chou, K. Yin, B. H. Zhong, S. X. Dou, “Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with superior high rate capability”, Electrochim. Acta, 2015, 186, 253.
[54] J. Zheng, C. Qin, T. Wu, S. Xie, L. Ni, M. Peng, Y. Tang, Y. Chen, “High-performance LiMnPO4/C nanoplates synthesized by negative pressure immersion and a solid state reaction using nanoporous Mn2O3 precursors”, J. Mater. Chem. A, 2015, 3, 15299.
[55] R. Hu, W. Sun, H. Liu, M. Zeng, M. Zhu, “The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries”, Nanoscale, 2013, 5, 11971.
[56] 許泰欣、洪俊宏,財團法人金屬工業研究發展中心,證書號數:TW I502789,染料敏化太陽能電池的光陽極之製備方法。
[57] D. Aurbach, “Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries”, J. Power Sources, 2000, 89, 206.
[58] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, “Ageing mechanisms in lithium-ion batteries”, J. Power Sources, 2005, 147, 269.
[59] P. Verma, P. Maire1, P. Novák, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries”, Electrochim. Acta, 2010, 55, 6332.
[60] S. K. Park, H.-K. Kim, K. C. Roh, K. B. Kim, H. S. Park, “The confinement of SnO2 nanocrystals into 3D RGO architectures for improved rate and cyclic performance of LIB anode”, CrystEngComm, 2016, 18, 6049.
[61] M. Mohamedi, S. J. Lee, D. Takahashi, M. Nishizawa, T. Itoh, I. Uchida, “Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries”, Electrochim. Acta, 2001, 46, 1161.
[62] Y. H. Hwang, E. G. Bae, K. S. Sohn, S. Shim, X. Song, M. S. Lah, M. Pyo, “SnO2 nanoparticles confined in a graphene framework for advanced anode materials”, J. Power Sources, 2013, 240, 683.
[63] H. Tao, S. Zhu, L. Xiong, X. Yang, L. Zhang, “Three-Dimensional Carbon-Coated SnO2/Reduced Graphene Oxide Foam as a Binder-Free Anode for High-Performance Lithium-Ion Batteries”, ChemElectroChem, 2016, 3, 1063.
[64] R. Liu, Y. Liu, Q. Kang, A. Casimir, H. Zhang, N. Li, Z. Huang, Y. Li, X. Lin, X. Feng, Y. Ma, G. Wu, “Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithiumion batteries”, RSC Adv., 2016, 6, 9402.
[65] L. Xia, S. Wang, G. Liu, L. Ding, D. Li , H. Wang, S. Qiao, “Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life”, Small, 2016, 12, 853.
[66] X. Wang, J. Li, Z. Chen, L. Lei, X. Liao, X. Huang, B. Shi, “Hierarchically structured C@SnO2@C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries”, J. Mater. Chem. A, 2016, 4, 18783.
[67] Z. F. Li, Q. Liu, Y. Liu, F. Yang, L. Xin, Y. Zhou, H. Zhang, L. Stanciu, J. Xie, “Facile Preparation of Graphene/SnO2 Xerogel Hybrids as the Anode Material in Li-Ion Batteries”, ACS Appl. Mater. Interfaces, 2015, 7, 27087.
[68] L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, G. Liang, “Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method”, Powder Technol., 2016, 292, 203.
[69] N. R. Srinivasan, S. Mitra, R. Bandyopadhyaya, “Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications”, Phys. Chem. Chem. Phys., 2014, 16, 6630.
[70] S. M. Paek, E. J. Yoo, I. Honma, “Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure”, Nano Lett., 2009, 9, 72.
[1] M. J. Aragón, C. Pérez-Vicente, J. L. Tirado, “Submicronic particles of manganese carbonate prepared in reverse micelles: A new electrode material for lithium-ion batteries”, Electrochem. Commun., 2007, 9, 1744.
[2] M. J. Aragón, B. León, C. P. Vicente, J. L. Tirado, “On the use of transition metal oxysalts as conversion electrodes in lithium-ion batteries”, J. Power Sources, 2009, 189, 823.
[3] M. J. Aragón, B. León, C. P. Vicente, J. L. Tirado, “A new form of manganese carbonate for the negative electrode of lithium-ion batteries”, J. Power Sources, 2011, 196, 2863.
[4] Y. Yan, Y. Zhu, Y. Yu, J. Li, T. Mei, Z. Ju, Y. Qian, “MnCO3 microstructures assembled with nanoparticles: shape-controlled synthesis and their application for Li-ion batteries.”, J. Nanosci. Nanotechnol., 2012, 12, 7334.
[5] L. Shao, J. Shu, R. Ma, M. Shui, L. Hou, K. Wu, D. Wang, Y. Ren, “Electrochemical Characteristics and Intercalation Mechanism of Manganese Carbonate as Anode Material for Lithium-Ion Batteries”, Int. J. Electrochem. Sci., 2013, 8, 1170.
[6] F. Zhang, R. Zhang, G. Liang, J. Feng, L. Lu, Y. Qian, “Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries”, Mater. Lett., 2013, 111, 165.
[7] L. Zhou, X. Kong, M. Gao, F. Lian, B. Li, Z. Zhou, H. Cao, “Hydrothermal Fabrication of MnCO3@rGO Composite as an Anode Material for High-Performance Lithium Ion Batteries”, Inorg. Chem., 2014, 53, 9228.
[8] X. Sun, Y. Xu, P. Ding, G. Chen, X. Zheng, R. Zhang, L. Li, “The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries”, J. Power Sources, 2014, 255, 163.
[9] T. Kesavan, S. Suresh, I. Arulraj, P. Ragupathy, S. Dheenadayalan, “Facile synthesis of hollow sphere MnCO3: A cheap and environmentally benign anode material for Li-ion batteries”, Mater. Lett., 2014, 136, 411.
[10] Y. Zhong, M. Yang, X. Zhou, Y. Luo, J. Wei, Z. Zhou, “Orderly Packed Anodes for High-Power Lithium-Ion Batteries with Super-Long Cycle Life: Rational Design of MnCO3 /Large-Area Graphene Composites”, Adv. Mater., 2015, 27, 806.
[11] L. Zhang, T. Mei, X. Wang, J. Wang, J. Li, W. Xiong, Y. Chen, M. Hao, “Hierarchical architectured MnCO3 microdumbbells: facile synthesis and enhanced performance for lithium ion batteries”, CrystEngComm, 2015, 17, 6450.
[12] S. Zhao, F. Feng, F. Yu, Q. Shen, “Flower-to-petal structural conversion and enhanced interfacial storage capability of hydrothermally crystallized MnCO3 via the in situ mixing of graphene oxide”, J. Mater. Chem. A, 2015, 3, 24095.
[13] M. Gao, X. Cui, R. Wang, T. Wang, W. Chen, “Graphene-wrapped mesoporous MnCO3 single crystals synthesized by a dynamic floating electrodeposition method for high performance lithium-ion storage”, J. Mater. Chem. A, 2015, 3, 14126.
[14] W. Kang, D. Y. W. Yu, W. Li, Z. Zhang, X. Yang, T. W. Ng, R. Zou, Y. Tang, W. Zhang, C. S. Lee, “Nanostructured porous manganese carbonate spheres with capacitive effects on the high lithium storage capability”, Nanoscale, 2015, 7, 10146.
[15] Z. Cao, Y. Ding, J. Zhang, Q. Wang, Z. Shi, N. Huo, S. Yang, “Submicron peanut-like MnCO3 as an anode material for lithium ion batteries”, RSC Adv., 2015, 5, 56299.
[16] S. Wang, Q. Li, W. Pu, Y. Wu, M. Yang, “Development of monodispersed MnCO3/graphene nanosheet composite as anode for lithium-ion battery by hydrothermal synthesis”, Ionics, 2016, 22, 771.
[17] L. Xiao, S. Wang, Y. Wang, W. Meng, B. Deng, D. Qu, Z. Xie, J. Liu, “High-Capacity and Self-Stabilized Manganese Carbonate Microspheres as Anode Material for Lithium-Ion Batteries”, ACS Appl. Mater. Interfaces, 2016, 8, 25369.
[18] Y. Zhong, L. Su, M. Yang, J. Wei, Z. Zhou, “Rambutan-Like FeCO3 Hollow Microspheres: Facile Preparation and Superior Lithium Storage Performances”, ACS Appl. Mater. Interfaces, 2013, 5, 11212.
[19] B. Yao, Z. Ding, X. Feng, L. Yin, Q. Shen, Y. Shi, J. Zhang, “Enhanced rate and cycling performance of FeCO3/graphene composite for high energy Li ion battery anodes”, Electrochim. Acta, 2014, 148, 283.
[20] S. Zhao, Y. Yu, S. Wei, Y. Wang, C. Zhao, R. Liu, Q. Shen, “Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries”, J. Power Sources, 2014, 253, 251.
[21] C. Zhang, W. Liu, D. Chen, J. Huang, X. Yu, X. Huang, Y. Fang, “One Step Hydrothermal Synthesis of FeCO3 Cubes for High Performance Lithium-ion Battery Anodes”, Electrochim. Acta, 2015, 182, 559.
[22] F. Zhang, R. Zhang, J. Feng, L. Ci, S. Xiong, J. Yang, Y. Qian, L. Li, “One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries”, Nanoscale, 2015, 7, 232.
[23] S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, “Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1−xCO3 composites with an integrated lattice structure and an atomicscale synergistic effect”, J. Mater. Chem. A, 2015, 3, 17181.
[24] L. Shao, R. Ma, K. Wu, M. Shui, M. Lao, D. Wang, N. Long, Y. Ren, J. Shu, “Metal carbonates as anode materials for lithium ion batteries”, J. Alloys Compd., 2013, 581, 602.
[25] Z. Ding, B. Yao, J. Feng, J. Zhang, “Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes”, J. Mater. Chem. A, 2013, 1, 11200.
[26] L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, P. Shen, “CoCO3 submicrocube/graphene composites with high lithium storage capability”, Nano Energy, 2013, 2, 276.
[27] M. A. Garakani, S. Abouali, B. Zhang, C. A. Takagi, Z. L. Xu, J. Q. Huang, J. Huang, J. K. Kim, “Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries”, ACS Appl. Mater. Interfaces, 2014, 6, 18971.
[28] L. Wang, W. Tang, Y. Jing, L. Su, Z. Zhou, “Do Transition Metal Carbonates Have Greater Lithium Storage Capability Than Oxides? A Case Study of Monodisperse CoCO3 and CoO Microspindles”, ACS Appl. Mater. Interfaces, 2014, 6, 12346.
[29] G. Huang, S. Xu, Y. Yang, H. Sun, Z. Li, Q. Chen, S. Lu, “Micro-spherical CoCO3 anode for lithium-ion batteries”, Mater. Lett., 2014, 131, 236.
[30] S. Zhao, S. Wei, R. Liu, Y. Wang, Y. Yu, Q. Shen, “Cobalt carbonate dumbbells for high-capacity lithium storage: A slight doping of ascorbic acid and an enhancement in electrochemical performances”, J. Power Sources, 2015, 284, 154.
[31] N. Tian, C. Hua, Z. Wang, L. Chen, “Reversible reduction of Li2CO3”, J. Mater. Chem. A, 2015, 3, 14173.
[32] X. Wang, B. Zhou, J. Guo, W. Zhang, X. Guo, “Selective crystal facets exposing of dumbbell-like Co3O4 towards high performances anode materials in lithium-ion batteries”, Mater. Res. Bull., 2016, 83, 414.
[33] Q. Li, C. Feng, Z. Guo, “Synthesis and electrochemical performances of MnxCoyNizCO3 as novel anode material”, Ceram. Int., 2016, 42, 7888.
[34] Z. Xie, J. Zhao, Y. Wang, “One-step solvothermal synthesis of Sn nanoparticles dispersed in ternary manganese-nickel-cobalt carbonate as superior anode materials for lithium ion batteries”, Electrochim. Acta, 2015, 174, 1023.
[35] F. Cao, D. Wang, R. Deng, J. Tang, S. Song, Y. Lei, S. Wang, S. Su, X. Yang, H. Zhang, “Porous Co3O4 microcubes: hydrothermal synthesis, catalytic and magnetic properties”, CrystEngComm, 2011, 13, 2123.
[36] H. Du, L. Jiao, Q. Wang, Q. Huan, L. Guo, Y. Si, Y. Wang, H. Yuan, “Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application”, CrystEngComm, 2013, 15, 6101.
[37] F. Pertlik, “Structures of Hydrothermally Synthesized Cobalt(II) Carbonate and Niekel(II) Carbonate”, Acta Cryst., 1986 C42, 4.
[38] F. Dang, T. Hoshino, Y. Oaki, E. Hosono, H. Zhou, H. Imai, “Synthesis of Li–Mn–O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3”, Nanoscale, 2013, 5, 2352.
[39] X. Sun, Y. Xu, P. Ding, G. Chen, X. Zheng, R. Zhang, L. Li, “The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries”, J. Power Sources, 2014, 255, 163.
[40] Y. Yan, F. Du, X. Shen, Z. Ji, H. Zhou, G. Zhu, “Porous SnO2–Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries”, Dalton Trans., 2014, 43, 17544.
[41] G. Luo, Y. Lu, S. Zeng, S. Zhong, X. Yu, Y. Fang, L. Sun, “Synthesis of rGO-Fe3O4-SnO2-C Quaternary Hybrid Mesoporous Nanosheets as a High-performance Anode Material for Lithium Ion Batteries”, Electrochim. Acta, 2015, 182, 715.
[42] W. S. Kim, Y. Hwa, H. C. Kim, J. H. Choi, H. J. Sohn, S. H. Hong, “SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance”, Nano Res., 2014, 7, 1128.
[43] X. Huang, X. Qi, F. Boey, H. Zhang, “Graphene-based composites”, Chem. Soc. Rev., 2012, 41, 666.
[44] C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. S. Zhao, “Graphene-based electrodes for electrochemical energy storage”, Energy Environ. Sci., 2013, 6, 1388.
[45] A. J. Hunt, E. H. K. Sin, R. Marriott, J. H. Clark, “Generation, Capture, and Utilization of Industrial Carbon Dioxide”, ChemSusChem, 2010, 3, 306.
[46] E. A. Quadrelli, G. Centi, J. L. Duplan, S. Perathoner, “Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential”, ChemSusChem, 2011, 4, 1194.
[47] M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, “Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain”, ChemSusChem, 2011, 4, 1216.
[48] E. S. Beach, Z. Cui, P. T. Anastas, “Green Chemistry: A design framework for sustainability”, Energy Environ. Sci., 2009, 2, 1038.
[49] D. Larcher, J. M. Tarascon, “Towards greener and more sustainable batteries for electrical energy storage”, Nat. Chem., 2015, 7, 19.
[50] J. M. Tarascon, “The Li-Ion Battery: 25 Years of Exciting and Enriching Experiences”, Electrochem. Soc. Interface, Fall 2016, 25, 79.
[51] C. C. Li, X. M. Yin, T. H. Wang, H. C. Zeng, “Morphogenesis of Highly Uniform CoCO3 Submicrometer Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications”, Chem. Mater., 2009, 21, 4984.
[52] B. Li, Y. Xie, C. Wu, Z. Li, J. Zhang, “Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures”, Mater. Chem. Phys., 2006, 99, 479.
[53] M. A. Garakani, S. Abouali, B. Zhang, Z. L. Xu, J. Huang, J. Q. Huang, E. K. Heidari, J. K. Kim, “Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics”, J. Mater. Chem. A, 2015, 3, 17827.
[54] X. Zhang, S. Heinonen, E. Levänen, “Applications of supercritical carbon dioxide in materials processing and synthesis”, RSC Adv., 2014, 4, 61137.
[55] R. Sui, P. Charpentier, “Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids”, Chem. Rev., 2012, 112, 3057.
[56] M. Y. Nassar, M. M. Moustafa, M. M. Taha, “Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal”, RSC Adv., 2016, 6, 42180.
[57] J. S. Wang, C. M. Wai, G. J. Brown, S. D. Apt, “Insulating oxide film formation with acid catalyzed hydrolysis of alkoxide precursors in supercritical fluid carbon dioxide”, RSC Adv., 2015, 5, 74753.
[58] E. Marceau, M. Che, J. Čejka, A. Zukal, “Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM-41 and Ni/Al-MCM-41 Catalysts”, ChemCatChem, 2010, 2, 413.
[59] P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J. C. Dupin, E. Elkaim, F. Leroux, “High-Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defi ned Local Structure”, Adv. Funct. Mater., 2014, 24, 4831.
[60] P. Sennu, H. S. Kim, J. Y. An, V. Aravindan, Y. S. Lee, “Synthesis of 2D/2D Structured Mesoporous Co3O4 Nanosheet/N-Doped Reduced Graphene Oxide Composites as a Highly Stable Negative Electrode for Lithium Battery Applications”, Chem. Asian J., 2015, 10, 1776.
[61] H. C. Choi, S. Y. Lee, S. B. Kim, M. G. Kim, M. K. Lee, H. J. Shin, J. S. Lee, “Local Structural Characterization for Electrochemical Insertion-Extraction of Lithium into CoO with X-ray Absorption Spectroscopy”, J. Phys. Chem. B, 2002, 106, 9252.
[62] A. Moen, D. G. Nicholson, B. S. Clausen, P. L. Hansen, A. Molenbroek, G. Steffensen, “X-ray Absorption Spectroscopic Studies at the Cobalt K-Edge on a Reduced Al2O3-Supported Rhenium-Promoted Cobalt Fischer-Tropsch Catalyst”, Chem. Mater., 1997, 9, 1241.
[63] B. M. Chae, E. S. Oh, Y. K. Lee, “Conversion mechanisms of cobalt oxide anode for Li-ion battery: In situ X-ray absorption fine structure studies”, J. Power Sources, 2015, 274, 748.
[64] T. J. Kühn, J. Hormes, N. Matoussevitch, H. Bönnemann, P. Glatzel, “Site-Selective High-Resolution X‑ray Absorption Spectroscopy and High-Resolution X‑ray Emission Spectroscopy of Cobalt Nanoparticles”, Inorg. Chem., 2014, 53, 8367.
[65] L. Liu, D. K. Wang, P. Kappen, D. L. Martens, S. Smart, J. C. D. da Costa, “Hydrothermal stability investigation of micro- and mesoporous silica containing long-range ordered cobalt oxide clusters by XAS”, Phys.Chem.Chem.Phys., 2015, 17, 19500.
[66] M. Nishibori, W. Shin, N. Izu, T. Itoh, I. Matsubara, “CO oxidation performance of Au/Co3O4 catalyst on the micro gas sensor device”, Catal. Today, 2013, 201, 85.
[67] D. Aurbach, “Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries”, J. Power Sources, 2000, 89, 206.
[68] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, “Ageing mechanisms in lithium-ion batteries”, J. Power Sources, 2005, 147, 269.
[69] P. Verma, P. Maire1, P. Novák, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries”, Electrochim. Acta, 2010, 55, 6332.
[70] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review”, Energy Environ. Sci., 2011, 4, 3243.
[71] J. K. Hong, J. H. Lee, S. M. Oh, “Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes”, J. Power Sources, 2002, 111, 90.
[72] J. R. Szczech, S. Jin, “Nanostructured silicon for high capacity lithium battery anodes”, Energy Environ. Sci., 2011, 4, 56.
[73] L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, G. Liang, “Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method”, Powder Technol., 2016, 292, 203.
[74] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, “Nano active materials for lithium-ion batteries”, Nanoscale, 2010, 2, 1294.
[75] Y. Liu, N. S. Hudak, D. L. Huber, S. J. Limmer, J. P. Sullivan, J. Y. Huang, “In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al2O3 Layers during Lithiation−Delithiation Cycles”, Nano Lett., 2011, 11, 4188.
[76] H. Li, Z. Wang, L. Chen, X. Huang, “Research on Advanced Materials for Li-ion Batteries”, Adv. Mater., 2009, 21, 4593.
[77] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, “Research Development on Sodium-Ion Batteries”, Chem. Rev., 2014, 114, 11636.
[78] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M. H. Han, T. Rojo, “Update on Na-based battery materials. A growing research path”, Energy Environ. Sci., 2013, 6, 2312.
[79] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, “Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries”, Adv. Funct. Mater., 2011, 21, 3859.
[80] M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, S. Komaba, “Negative electrodes for Na-ion batteries”, Phys.Chem.Chem.Phys., 2014, 16, 15007.
[81] S. H. Lee, Y. Kwon, S Park, M. Cho, Y. Lee, “Facile synthesis of MnCO3 nanoparticles by supercritical CO2 and their conversion to manganese oxide for supercapacitor electrode materials”, J Mater Sci, 2015, 50, 5952.
[82] J. Ming, C. Wu, H. Cheng, Y. Yu, F. Zhao, “Reaction of hydrous inorganic metal salts in CO2 expanded ethanol: Fabrication of nanostructured materials via supercritical technology”, J. Supercrit. Fluids, 2011, 57, 137.
[83] L. Wang, L. Zhuo, F. Zhao, “Carbon dioxide‐expanded ethanol‐assisted synthesis of carbon‐based metal composites and their catalytic and electrochemical performance in lithium‐ion batteries”, Chinese J. Catal., 2016, 37, 218.
[84] Y. Wang, H. Xia, L. Lu, J. Lin, “Excellent Performance in Lithium-Ion Battery Anodes: Rational Synthesis of Co(CO3)0.5(OH)0.11H2O Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co3O4”, ACS Nano, 2010, 4, 1452.
[85] S. Xiong, J. S. Chen, X. W. Lou, H. C. Zeng, “Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-Like Co(CO3)0.5(OH)∙0.11H2O and Their Lithium-Storage Properties”, Adv. Funct. Mater. 2012, 22, 861.
[1] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, “Research Development on Sodium-Ion Batteries”, Chem. Rev., 2014, 114, 11636.
[2] C. Fang, Y. Huang, W. Zhang, J. Han, Z Deng, Y. Cao, H. Yang, “Routes to High Energy Cathodes of Sodium-Ion Batteries”, Adv. Energy Mater., 2016, 6, 1501727.
[3] K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, S. Komaba, “Layered oxides as positive electrode materials for Na-ion batteries”, MRS Bull., 2014, 39, 416.
[4] M. H. Han, E. Gonzalo, G. Singh, T. Rojo, “A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries”, Energy Environ. Sci., 2015, 8, 81.
[5] M. D. Slater, D. Kim, E. Lee, C. S. Johnson, “Sodium-Ion Batteries”, Adv. Funct. Mater., 2013, 23, 947.
[6] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries”, Energy Environ. Sci., 2011, 4, 2682.
[7] J. Kim, D. H. Seo, H. Kim, I. Park, J. K. Yoo, S. K. Jung, Y. U. Park, W. A. Goddard III, K. Kang, “Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries”, Energy Environ. Sci., 2015, 8, 540.
[8] W. Tang, X. Song, Y. Du, C. Peng, M. Lin, S. Xi, B. Tian, J. Zheng, Y. Wu, F. Pan, K. P. Loh, “High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries”, J. Mater. Chem. A, 2016, 4, 4882.
[9] P. Barpanda, T. Ye, S. I. Nishimura, S. C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada, “Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries”, Electrochem. Commun., 2012, 24, 116.
[10] L. P. Wang, L. Yu, X. Wang, M. Srinivasan, Z. J. Xu, “Recent developments in electrode materials for sodium-ion batteries”, J. Mater. Chem. A, 2015, 3, 9353.
[11] K. Saravanan , C. W. Mason , A. Rudola , K. H. Wong , and P. Balaya, “The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries”, Adv. Energy Mater., 2013, 3, 444.
[12] C. Zhu, K. Song, P. A. van Aken, J. Maier, and Y. Yu, “Carbon-Coated Na3V2(PO4)3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes”, Nano Lett., 2014, 14, 2175.
[13] G. Li, D. Jiang, H. Wang, X. Lan, H. Zhong, Y. Jiang, “Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries”, J. Power Sources, 2014, 265, 325.
[14] I. D. Gocheva, M. Nishijima, T. Doi, S. Okada, J. I. Yamaki, T. Nishida, “Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries”, J. Power Sources, 2009, 187, 247.
[15] H. Wook Lee, R. Y. Wang, M. Pasta, S. W. Lee, N. Liu, Y. Cui, “Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries”, Nat. Commun., 2014, 5, 5280.
[16] Y. Lu, L. Wang, J. Cheng, J. B. Goodenough, “Prussian blue: a new framework of electrode materials for sodium batteries”, Chem. Commun., 2012, 48, 6544.
[17] J. R. Kim, G. G. Amatucci, “Structural and Electrochemical Investigation of Na+ Insertion into High-Voltage Spinel Electrodes”, Chem. Mater., 2015, 27, 2546.
[18] Y. Zhang, C. Yuan, K. Ye, X. Jiang, J. Yin, G. Wang, D. Cao, “An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in λ-MnO2 positive electrode”, Electrochim. Acta, 2014, 148, 237.
[19] D. Su, H. J. Ahn, G. Wang, “Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries”, J. Mater. Chem. A, 2013, 1, 4845.
[20] E. Chae, J. Gim, J. Song, S. Kim, V. Mathew, J. Han, S. Boo, J. Kim, “Mesoporous manganese dioxide cathode prepared by an ambient temperature synthesis for Na-ion batteries”, RSC Adv., 2013, 3, 26328.
[21] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson, and T. Rajh, “Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries”, ACS Nano, 2012, 6, 530.
[22] H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, “Update on anode materials for Na-ion batteries”, J. Mater. Chem. A, 2015, 3, 17899.
[23] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, “Research Development on Sodium-Ion Batteries”, Chem. Rev., 2014, 114, 11636.
[24] S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, “Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries”, Adv. Energy Mater., 2012, 2, 710.
[25] B. Jache, P. Adelhelm, “Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena”, Angew. Chem., 2014, 126, 10333.
[26] D. A. Stevens, J. R. Dahn, “High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries”, J. Electrochem. Soc., 2000, 147, 1271.
[27] R. S. Babu, M. Pyo, “Hard Carbon and Carbon Nanotube Composites for the Improvement of Low-Voltage Performance in Na Ion Batteries”, J. Electrochem. Soc., 2014, 161, A1045.
[28] L. D. Ellis, B. N.Wilkes, T. D. Hatchard, M. N. Obrovac, “In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells”, J. Electrochem. Soc., 2014, 161, A416.
[29] S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell”, Electrochem. Commun., 2012, 21, 65.
[30] Y. Kim, K. H. Ha, S. M. Oh, K. T. Lee, “High-Capacity Anode Materials for Sodium-Ion Batteries”, Chem. Eur. J., 2014, 20, 11980.
[31] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M. H. Han, T. Rojo, “Update on Na-based battery materials. A growing research path”, Energy Environ. Sci., 2013, 6, 2312.
[32] W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, “Na-Ion Battery Anodes: Materials and Electrochemistry”, Acc. Chem. Res., 2016, 49, 231.
[33] Y. Liu, Y. Xu, Y. Zhu, J. N. Culver, C. A. Lundgren, K. Xu, C. Wang, “Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes”, ACS Nano, 2013, 7, 3627.
[34] H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, L. Hu, “Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir”, Nano Lett., 2013, 13, 3093.
[35] S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, Y. Yamada, “Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries”, J. Electrochem. Soc., 2010, 157, A60.
[36] Z. Jian, B. Zhao, P. Liu, F. Li, M. Zheng, M. Chen, Y. Shib, H. Zhou, “Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries”, Chem. Commun., 2014, 50, 1215.
[37] Z. Li, J. Ding, D. Mitlin, “Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance”, Acc. Chem. Res., 2015, 48, 1657.
[38] Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou, Y. J. Kim, “Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances”, J. Mater. Chem., A, 2014, 2, 529.
[39] H. Li, P. He, Y. Wang, E. Hosono, H. Zhou, “High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5”, J. Mater. Chem., 2011, 21, 10999.
[40] G. Venkatesh, V. Pralong, O. I. Lebedev, V. Caignaert, P. Bazin, B. Raveau, “Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation”, Electrochem. Commun., 2014, 40, 100.
[41] D. W. Su, S. X. Dou, G. X. Wang, “Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries”, J. Mater. Chem. A, 2014, 2, 11185.
[42] H. Kim, R. H. Kim, S. S. Lee, Y. Kim, D. Y. Kim, K. Park, “Effects of Ni Doping on the Initial Electrochemical Performance of Vanadium Oxide Nanotubes for Na-Ion Batteries”, ACS Appl. Mater. Interfaces, 2014, 6, 11692.
[43] J. Shao, Y. Ding, X. Li, Z. Wan, C. Wu, J. Yang, Q. Qu, H. Zheng, “Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries”, J. Mater. Chem. A, 2013, 1, 12404.
[44] W. Wang, B. Jiang, L. Hu, Z. Lin, J. Hou, S. Jiao, “Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance”, J. Power Sources, 2014, 250, 181.
[45] H. Fei, Y. Lin, M. Wei, “Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance”, J. Colloid Interf. Sci., 2014, 425, 1.
[46] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, “Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries”, J. Power Sources, 2011, 196, 814.
[47] G.H.A. Therese, P.V. Kamath, “Electrochemical Synthesis of Metal Oxides and Hydroxides”, Chem. Mater., 2000, 12, 1195.
[48] L.P. Bicelli, B. Bozzini, C. Mele, L. D′Urzo, “A Review of Nanostructural Aspects of Metal Electrodeposition”, Int. J. Electrochem. Sci., 2008, 3, 356−408.
[49] Y. Liu, D. Liu, Q. Zhang, G. Cao, “Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries”, J. Mater. Chem., 2011, 21, 9969.
[50] S. Beke, “A review of the growth of V2O5 films from 1885 to 2010”, Thin Solid Films, 2011, 519, 1761.
[51] C. Wu, Y. Xie, “Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving”, Energy Environ. Sci., 2010, 3, 1191.
[52] Y. Liu, Y. Xu, X. Han, C. Pellegrinelli, Y. Zhu, H. Zhu, J. Wan, A.C. Chung, O. Vaaland, C. Wang, L. Hu, “Porous Amorphous FePO4 Nanoparticles Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes”, Nano Lett., 2012, 12, 5664.
[53] O. B. Chae, J. Kim, I. Park, H. Jeong, J. H. Ku, J. H. Ryu, K. Kang, S. M. Oh, “Reversible Lithium Storage at Highly Populated Vacant Sites in an Amorphous Vanadium Pentoxide Electrode”, Chem. Mater., 2014, 26, 5874.
[54] E. Uchaker, Y. Z. Zheng, S. Li, S. L. Candelaria, S. Hu and G. Z. Cao, “Better than crystalline: amorphous vanadium oxide for sodium-ion batteries”, J. Mater. Chem. A, 2014, 2, 18208.
[55] A. Q. Pan, H. B. Wu, L. Zhang, X. W. (David) Lou, “Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties”, Energy Environ. Sci., 2013, 6, 1476.
[56] X. Rui, Z. Lu, H. Yu, D. Yang, H. H. Hng, T. M. Lim, Q. Yan, “Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage”, Nanoscale, 2013, 5, 556.
[57] Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An, L. Mai, “Hydrated vanadium pentoxide with superior sodium storage capacity”, J. Mater. Chem. A, 2015, 3, 8070.
[58] C. H. Lai, C. K. Lin, S. W. Lee, H. Y. Li, J. K. Chang, M. J. Deng, “Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications”, J. Alloy Compd., 2012, 536S, S428.
[59] C.C. Hu, P.Y. Chuang, Y.T. Wu, “Tafel and Electron Paramagnetic Resonance Studies of the Anodic Deposition of Hydrous Manganese Oxides with the Presence of Acetate Ions”, J. Electrochem. Soc., 2005, 152, C723.
[60] C.C. Hu, M.J. Liu, K.H. Chang, “Anodic deposition of hydrous ruthenium oxide for supercapacitors”, J. Power Sources, 2007, 163, 1126.
[61] Y. Sato, T. Asada, H. Tokugawa, K. Kobayakawa, “Observation of structure change due to discharge/charge process of V2O5 prepared by ozone oxidation method, using in situ X-ray diffraction technique”, J. Power Sources, 1997, 68, 674.
[62] E. Potiron, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard, “Electrochemically synthesized vanadium oxides as lithium insertion hosts”, Electrochim. Acta, 1999, 45, 197.
[63] D. Briggs, M.P. Seah, Practical surface analysis, John Willey & sons. Vol. 1, second edition 1993.
[64] Colton R.J., Guzman A.M., Rabalais J.W., “Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy”, J. Appl. Phys., 1978, 49, 409.
[65] D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G.W. Spitznagel, I. Rademacher, “XPS studies of oxidic model catalysts: Internal standards and oxidation numbers”, J. Electron Spectrosc. Relat. Phenom., 1993, 63, 91.
[66] G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. D. Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)”, J. Electron Spectrosc. Relat. Phenom., 2004, 135, 167.
[67] J. M. Lee, H. S. Hwang, W. I. Cho, B. W. Cho, K. Y. Kim, “Effect of silver co-sputtering on amorphous V2O5 thin-films for microbatteries”, J. Power Sources, 2004, 136, 122.
[68] M. Sathiya, A. S. Prakash, K. Ramesha, J-M. Tarascon, A. K. Shukla, “V2O5-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage”, J. Am. Chem. Soc., 2011, 133, 16291
[69] G.P. Holland, F. Huguenin, R. M. Torresi, D. A. Buttry, “Comparison of V2O5 Xerogels Prepared by the Vanadate and Alkoxide Routes Using X-Ray Absorption and other Methods”, J. Electrochem. Soc., 2003, 150, A721.
[70] M. Giorgetti, S. Passerini, W. H. Smyrl, “Identification of an Unconventional Zinc Coordination Site in Anhydrous ZnxV2O5 Aerogels from X-ray Absorption Spectroscopy”, Chem. Mater., 1999, 11, 2257.
[71] J. Wong, F. W. Lytle, R. P. Messmer, D. H. Maylotte, “K-edge absorption spectra of selected vanadium compounds”, Phys. Rev. B, 1984, 30, 5596.
[72] K. Honma, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Asai, Y. Makiyama, “Fabrication, microstructure and electrical conductivity of V2O5 ceramics”, Mater. Res. Bull., 1996, 31, 531.
[73] D. W. Su, G. X. Wang, “Single-Crystalline Bilayered V2O5 Nanobelts for High-Capacity Sodium-Ion Batteries”, ACS Nano, 2013, 7, 11218.
[74] V. Raju, J. Rains, C. Gates, W. Luo, X. Wang, W.F. Stickle, G.D. Stucky, X. Ji, “Superior Cathode of Sodium-Ion Batteries: Orthorhombic V2O5 Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis Deposition”, Nano Lett., 2014, 14, 4119.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2017-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明