博碩士論文 101389005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.137.218.230
姓名 王覺漢(Chueh-Han Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 離子液體電解質於鈉離子電池之應用
(Application of ionic liquid electrolyte for sodium ion battery)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中分為三部分探討離子液體電解質運用於鈉離子電池的電化學行為。第一部份使用1-Butylmethylpyrrolidinium bis(trifluoromet hanesulfonyl)imide (BMP-TFSI)離子液體分別溶解含1 M Sodium tetrafluoroborate (NaBF4)、Sodium perchlorate (NaClO4)、Sodium trifluoromethanesulfonimide (NaTFSI)及Sodium hexafluorophosphate (NaPF6)的四種離子液體電解質,並對Na0.44MnO2/Na進行電化學測試。其中NaTFSI/BMP-TFSI 因為有最小的介面阻抗,因此充放電的特性優於其他三者。而此離子液體系統也表現出優異的熱穩定性。測時於75 ℃時Na0.44MnO2/Na的電容值為115 mAh g-1 (0.05 C)十分接近121 mAh g-1的理論值,提升至1 C仍可保有85 %的電容值。
第二部分除了延續使用第一部分的NaClO4/BMP-TFSI離子液體電解質外,另外增加了由N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PMP-FSI)溶解含1 M Sodium(I) bis(fluorosulfonyl)imide ( NFaFSI )及N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PMP-TFSI)溶解含1 M NaTFSI所配製而成的離子液體電解質,其中NaFSI/PMP-FSI有最佳的性質,推測因FSI能在硬碳表面形成較佳SEI幫助鈉離子嵌入結構中。測試於90 ℃時,Hard carbon/Na 有332 mAh g-1的電容值,5 A g-1時則為32 mAh g-1顯示出良好的熱定性。
第三部分則使用Na0.44MnO2及硬碳(Hard Carbon)作為鈉離子電池的正負極材料,在組成Na0.44MnO2- Hard Carbon全電池前,先對Na0.44MnO2/Na Cell及Hard Carbon/Na Cell分別在Ethylene carbonate/diethyl carbonate (EC/DEC) 溶入1 M NaClO4的有機溶劑電解液及第二部分實驗使用的NaFSI/PMP-FSI離子液體電解質進行充放電測試,在離子液體電解液中Na0.44MnO2/Na Cell的電容值為115 mAh g-1,在Hard Carbon/Na Cell的電容值則為280 mAh g-1。Na0.44MnO2/Hard Carbon Full Cell以離子液體作為電解液時,在高速充放電下比起有機電解液具有較高電容值。綜合三部分的研究得知離子液體電解質具有良好熱穩定性及對鈉離子正負極的獨特性,因此研究中使用的離子液體電解質有潛力應用於實際鈉離子電池上。
摘要(英) In this work, we investigate the electrochemical performance of ionic liquid electrolyte for sodium ion battery. In the first part, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) with various Na solutes, namely NaBF4, NaClO4, NaTFSI, and NaPF6, is used as an electrolyte for rechargeable Na/Na0.44MnO2 cells. The cell with NaClO4-incorporated IL electrolyte exhibits superior chargeedischarge performance due to it having the lowest solid electrolyte-interface resistance and charge transfer resistance at both the Na and Na0.44MnO2 electrodes. The IL electrolyte shows high thermal stability and is suitable for use at an elevated temperature. At 75 ℃, the measured capacity of Na0.44MnO2 in the IL electrolyte with NaClO4 is as high as 115 mAh g-1 (at 0.05 C), which is close to the theoretical value (121 mAh g-1). Moreover, 85% of this capacity can be retained when the chargeedischarge rate is increased to 1 C. These properties are superior to those of a conventional organic electrolyte.
At second part, Hard carbon/Na cell were investigate in NaClO4/BMP-TFSI ion liquid electrolyte, N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquid electrolyte with 1 M sodium bis(fluorosulfonyl)imide (NaFSI) ionic liquid electrolyte and N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PMP-TFSI) with 1 M NaTFSI (NaTFSI) ionic liquid electrolye, respectly. The result shows NaFSI/PMP-FSI has better electrochemical performance than NaClO4/BMP-TFSI and NaTFSI/PMP-TFSI ionic liquid electrolyte due to FSI anion could established a well SEI film to protect electrode surface. At high temperature test (90 ℃), Hard carbon/Na shows a reserveable capacity of 332 mAh g-1(30 mA g-1) and 32 mAh g-1(5 A g-1) while incorporate with NaFSI/PMP-FSI ionic liquid electrolyte. The result indicate NaFSI/PMP-FSI has good thermal properties and suitable for Hard carbon for storage sodium ion.
The third part, Na0.44MnO2 and Hard carbon were used as the cathode and the anode, respectively, in a sodium-ion battery. At first, the NaMnO2/Na half cell and the hard carbon/Na half cell are studied both in conventional ethylene carbonate/diethyl carbonate mixed electrolyte containing 1 M NaClO4 and in. In the ionic liquid electrolyte, the Na0.44MnO2 and Hard carbon electrodes can show reversible capacities of 115 mAh g-1 and 280 mAh g-1, respectively. Based on the obtained electrochemical properties, a Na0.44MnO2/Hard carbon full cell with the ionic liquid electrolyte is constructed. A satisfactory high-rate capability is recognized. Because the high thermal stability, low volatility, and low flammability of the ionic liquid electrolyte, high safety and good durability of the cell are warranted. The proposed cell could have great potential for practical applications.
關鍵字(中) ★ 鈉離子電池
★ 離子液體
★ 電解質
關鍵字(英) ★ sodium ion battery
★ ionic liquid
★ electrolyte
論文目次 摘要........................................... I
Abstract...................................... III
致謝........................................... V
表目錄......................................... VII
圖目錄......................................... VIII
一.前言........................................ 1
二.研究背景與文獻回顧............................ 3
2-1鈉離子電池................................... 3
2-2正極材料......................................7
2.3電解液....................................... 11
2.3.1金屬鹽類溶質的選擇.......................... 13
2.3.2溶劑的選擇................................. 16
2.4負極材料.................................... 35
三.實驗方法與步驟............................... 40
3.1 Na0.44MnO2製備............................. 40
3.2離子液體及有機電解液......................... 40
3.3硬碳 (Hard Carbon).......................... 41
3.4鈕扣電池組裝................................. 41
3.5材料分析及電化學分析.......................... 42
3.5.1微觀結構分析............................... 42
3.5.2表面成分分析............................... 42
四.結果與討論................................... 44
4.1材料分析..................................... 44
4.1.1掃描式電子顯微鏡及X光繞射圖譜................ 44
4.2 添加不同鈉鹽於1-Butyl-1-methylpyrrolidinium bis(trifluorome- thanesulfonyl) imide (BMP-TFSI)離子液體對Na0.44MnO2/Na的充放電性值探討................... 46
4-2 N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (PMP-FSI)離子液體運用於鈉離子電池之硬碳負極. 60
4-3 N-propyl-N-methylpyrrolidinium Bis(fluorosulfonyl) imide (PMP-FSI)離子液體運用於Na0.44MnO2-Hard Carbon鈉離子電池............................................. 65
五.結論........................................ 84
參考文獻....................................... 86

參考文獻 1. Carmichael, R.S., Practical handbook of physical properties of rocks and minerals. 1989: CRC press.
2. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013, 23, 947.
3. Kim, Y., et al., High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry-A European Journal, 2014, 20, 11980.
4. K. Mizushima, P.C.J., P.J. Wiseman and J.B. Goodenough LixCoO2: A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH ENERGY
DENSITY Materials Research Bulletin, 1980, 15, 783.
5. Claude DELMAS, J.-J.B., Claude FOUASSIER and a.P. HAGENMULLER, ELECTROCHEMICAL INTERCALATION OF SODIUM IN NaxCoO2 BRONZES Solid State Ionics 1981, 3-4, 165.
6. Yabuuchi, N., et al., Research development on sodium-ion batteries. Chemical Review, 2014, 114, 11636.
7. Marca M. Doeff, Y.M., Steven J. Visco, and Lutgard C. De Jonghe Electrochemical Insertion of Sodium into Carbon Journal of The Electrochemical Society, 1993, 140, L169.
8. FOULETIER, P.G.a.M., ELECTROCHEMICAL INTERCALATION OF SODIUM IN GRAPHITE, Solid State lonics, 1988, 28-30.
9. Dahn, D.A.S.a.J.R., High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. Journal of The Electrochemical Society, 2000, 147, 1271.
10. Jache, B. and P. Adelhelm, Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium‐Ion Batteries by Making Use of Co‐Intercalation Phenomena. Angewandte Chemie International Edition, 2014, 53, 10169.
11. Kim, H., et al., Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems. Advanced Functional Materials, 2015, 25, 534.
12. Wang, Y.-X., et al., Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013, 57, 202.
13. Ding, J., et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS nano, 2013, 7, 11004.
14. Wen, Y., et al., Expanded graphite as superior anode for sodium-ion batteries. Nature communications, 2014, 5, 4033.
15. Masquelier, C. and L. Croguennec, Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chemical Reviews, 2013, 113, 6552.
16. Yamada, Y., et al., Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film. Langmuir, 2009, 25, 12766,.
17. Yabuuchi, N., et al., Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014, 114, 11636,.
18. Kuratani, K., et al., Conductivity, viscosity and density of MClO4 (M=Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations. Journal of Power Sources, 2013, 223, 175.
19. Palomares, V., et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012, 5, 5884.
20. Kim, H., et al., Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery. Chemistry of Materials, 2012, 24, 1205.
21. Sauvage, F., et al., Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2. Inorganic Chemistry, 2007, 46, 3289,.
22. Cao, Y., et al., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Advanced Materials, 2011, 23, 3155.
23. Whitacre, J.F., A. Tevar, and S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010, 12, 463.
24. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22.
25. Scrosati, B., et al., Lithium batteries: advanced technologies and applications. Vol. 58. 2013, John Wiley & Sons.
26. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004, 104, 4303.
27. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22.
28. Abe, T., et al., Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society, 2004, 151, A1120.
29. Abe, T., et al., Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005, 152, A2151.
30. Sagane, F., et al., Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. Journal of Power Sources, 2005, 146, 749.
31. Yamada, Y., et al., Kinetics of Lithium-Ion Transfer at the Interface between Li0.35La0.55TiO3 and Binary Electrolytes. The Journal of Physical Chemistry C, 2009, 113, 14528.
32. Okoshi, M., et al., Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. Journal of the Electrochemical Society, 2013, 160, A2160.
33. Sagane, F., T. Abe, and Z. Ogumi, Sodium-ion transfer at the interface between ceramic and organic electrolytes. Journal of Power Sources, 2010, 195, 7466.
34. Mizuno, Y., et al., Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochimica Acta, 2012, 63,139.
35. Hong, S.Y., et al., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy & Environmental Science, 2013, 6, 2067.
36. Krause, L.J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources, 1997, 68, 320.
37. Plewa-Marczewska, A., et al., New Tailored Sodium Salts for Battery Applications. Chemistry of Materials, 2014, 26, 4908.
38. Scheers, J., et al., All fluorine-free lithium battery electrolytes. Journal of Power Sources, 2014, 251, 451.
39. Devlin, D.J. and P.J. Herley, Thermal decomposition and dehydration of sodium perchlorate monohydrate. Reactivity of Solids, 1987, 3, 75.
40. Han, H.-B., et al., Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011, 196, 3623.
41. Bhide, A., et al., Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 Physical Chemistry Chemical Physics, 2014, 16, 1987.
42. Ma, Z.F., et al., Electrochemical evaluation of composite cathodes base on blends of LiMn2O4 and LiNi0.8Co0.2O2. Electrochemistry Communications, 2001, 3, 425.
43. Fong, R., U. Von Sacken, and J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 1990, 137, 2009.
44. Ponrouch, A., et al., In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science, 2012, 5, 8572.
45. Ponrouch, A., et al., Towards high energy density sodium ion batteries through electrolyte optimization. Energy & Environmental Science, 2013, 6, 361.
46. Kamath, G., et al., In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications. The Journal of Physical Chemistry C, 2014, 118, 13406.
47. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 1999, 99, 2071.
48. Watanabe, M., et al., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical reviews, 2017, 117, 7190.
49. Kubota, K., et al., Ternary phase diagrams of alkali bis (trifluoromethylsulfonyl) amides. Journal of Chemical & Engineering Data, 2008, 53, 2144.
50. Kubota, K., et al., Electrochemical properties of alkali bis (trifluoromethylsulfonyl) amides and their eutectic mixtures. Electrochimica Acta, 2010, 55, 1113.
51. Watarai, A., et al., A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis (trifluoromethylsulfonyl) amide mixture as an electrolyte. Journal of power sources, 2008, 183, 724.
52. Kubota, K., T. Nohira, and R. Hagiwara, Thermal properties of alkali bis (fluorosulfonyl) amides and their binary mixtures. Journal of Chemical & Engineering Data, 2010, 55, 3142.
53. Fukunaga, A., et al., Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries. Journal of Power Sources, 2012, 209,: 56.
54. Chen, C.-Y., et al., Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. Journal of Power Sources, 2014, 246, 783.
55. Kubota, K. and H. Matsumoto, Cation Mixtures of Alkali Metal (Fluorosulfonyl)(trifluoromethylsulfonyl) Amide as Electrolytes for Lithium Secondary Battery. Journal of The Electrochemical Society, 2014, 161, A902.
56. Wibowo, R., et al., The electrode potentials of the Group I alkali metals in the ionic liquid N-butyl-N-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide. Chemical Physics Letters, 2010, 492, 276.
57. Matsumoto, H., H. Sakaebe, and K. Tatsumi, Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 2005, 146, 45.
58. Girard, G., et al., Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Physical Chemistry Chemical Physics, 2015, 17, 8706.
59. Garcia, B., et al., Room temperature molten salts as lithium battery electrolyte. Electrochimica Acta, 2004, 49, 4583.
60. Seki, S., et al., Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. The Journal of Physical Chemistry B, 2006, 110, 10228.
61. Ishikawa, M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of power sources, 2006, 162, 658.
62. Tokuda, H., et al., Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. The Journal of Physical Chemistry B, 2005, 109, 6103.
63. Sato, T., et al., Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. Journal of Power Sources, 2004, 138, 253.
64. Ueno, K., H. Tokuda, and M. Watanabe, Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Physical Chemistry Chemical Physics, 2010, 1,1649.
65. Umebayashi, Y., et al., Raman spectroscopic studies and ab initio calculations on conformational isomerism of 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) amide solvated to a lithium ion in ionic liquids: effects of the second solvation sphere of the lithium ion. The Journal of Physical Chemistry B, 2010, 114, 6513.
66. Zhou, Z.B., H. Matsumoto, and K. Tatsumi, Low‐melting, low‐viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chemistry–A European Journal, 2005, 11, 752.
67. Hosokawa, T., et al., Stability of Ionic Liquids against Sodium Metal: A Comparative Study of 1-Ethyl-3-methylimidazolium Ionic Liquids with Bis (fluorosulfonyl) amide and Bis (trifluoromethylsulfonyl) amide. The Journal of Physical Chemistry C, 2016, 120, 9628.
68. Yoon, H., et al., Physicochemical properties of N-propyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide for sodium metal battery applications. Physical Chemistry Chemical Physics, 2014, 16, 12350.
69. Matsumoto, H., H. Sakaebe, and K. Tatsumi, Li/LiCoO2 Cell Performance Using Ionic Liquids Composed of N, N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium-Effect of Anionic Structure. ECS Transactions, 2009, 16, 59.
70. Yamagata, M., et al., Charge–discharge behavior of graphite negative electrodes in bis (fluorosulfonyl) imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces. Electrochimica Acta, 2013, 110, 181.
71. Balducci, A., et al., Ionic liquids as electrolyte in lithium batteries: In situ FTIRS studies on the use of electrolyte additives. ECS Transactions, 2008. 11, 109.
72. Ding, C., et al., NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range. Journal of Power Sources, 2013, 238, 296.
73. Ding, C., et al., Na [FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature. Journal of Power Sources, 2014, 269, 124.
74. Forsyth, M., et al., Novel Na+ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na+ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells. The Journal of Physical Chemistry C, 2016, 120, 4276.
75. Chagas, L.G., et al., Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte. Journal of Power Sources, 2014, 247, 377.
76. Noor, S.A.M., et al., Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications. Electrochimica Acta, 2013, 114, 766.
77. Wongittharom, N., et al., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A, 2014, 2, 5655.
78. Hasa, I., S. Passerini, and J. Hassoun, Characteristics of an ionic liquid electrolyte for sodium-ion batteries. Journal of Power Sources, 2016, 303, 203.
79. Matsumoto, K., et al., The Na [FSA]–[C2C1im][FSA](C2C1im)+:1-ethyl-3-methylimidazolium and FSA−: bis (fluorosulfonyl) amide) ionic liquid electrolytes for sodium secondary batteries. Journal of Power Sources, 2014, 265, 36.
80. Basile, A., et al., Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids. Electrochemistry Communications, 2016, 71, 48.
81. Angell, C.A., Y. Ansari, and Z. Zhao, Ionic liquids: past, present and future. Faraday discussions, 2012, 154, 9.
82. Tamura, T., et al., Physicochemical properties of glyme–Li salt complexes as a new family of room-temperature ionic liquids. Chemistry letters, 2010, 39, 753.
83. Pappenfus, T.M., et al., Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. Journal of The Electrochemical Society, 2004, 151, A209.
84. Yoshida, K., et al., Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. Journal of the American Chemical Society, 2011, 133, 13121.
85. Ueno, K., et al., Li+ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248.
86. Moon, H., et al., Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. The Journal of Physical Chemistry C, 2014, 118, 20246.
87. Mandai, T., et al., Phase diagrams and solvate structures of binary mixtures of glymes and Na salts. The Journal of Physical Chemistry B, 2013, 117, 15072.
88. Suo, L., et al., A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature communications, 2013, 4, 1481.
89. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications, 2016, 7, 12032.
90. Yamada, Y. and A. Yamada, Review—Superconcentrated Electrolytes for Lithium Batteries. Journal of The Electrochemical Society, 2015, 162, A2406.
91. Suo, L., et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350, 938.
92. Noor, S.A.M., et al., Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochimica Acta, 2015, 169, 376.
93. Basile, A., et al., Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganic− Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 986.
94. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014, 7, 232.
95. Gotoh, K., et al., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. Journal of Power Sources, 2013, 225, 140.
96. Wenzel, S., et al., Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy & Environmental Science, 2011, 4,. 3342.
97. Cao, Y., et al., Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012, 12, 3783.
98. Wang, H.-g., et al., Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries. ChemSusChem, 2013, 6, 56.
99. Komaba, S., et al., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Advanced Functional Materials, 2011, 21, 3859.
100. Egashira, M., et al., Influence of Ionic Liquid Species in Non-Aqueous Electrolyte on Sodium Insertion into Hard Carbon. Electrochemistry, 2012, 80, 755.
101. Fukunaga, A., et al., A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K. Journal of Power Sources, 2014, 246, 387.
102. Komaba, S., et al., Electrochemical Na insertion and solid electrolyte interphase for hard‐carbon electrodes and application to Na‐Ion batteries. Advanced Functional Materials, 2011, 21, 3859.
103. Ponrouch, A., et al., Towards high energy density sodium ion batteries through electrolyte optimization. Energy & Environmental Science, 2013, 6, 2361.
104. Vogt, L.O., et al., Understanding the interaction of the carbonates and binder in Na-ion batteries: a combined bulk and surface study. Chemistry of Materials, 2015, 27, 1210.
105. Klavetter, K.C., et al., Li-and Na-reduction products of meso-Co3O4 form high-rate, stably cycling battery anode materials. Journal of Materials Chemistry A, 2014, 2, 14209.
106. Wongittharom, N., et al., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A, 2014, 2, 5655.
107. Wongittharom, N., et al., Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl Mater Interfaces, 2014, 6, 17564.
108. Wang,C.-H.,et al.,Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes. Journal of Power Sources, 2015, 274, 1016.
109. Chen, C.-Y., et al., Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA. Journal of Power Sources, 2013, 237, 52.
110. Ding, C., et al., Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature. Journal of Power Sources, 2014, 269, 124.
111. Nohira, T., T. Ishibashi, and R. Hagiwara, Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423K for a sodium secondary battery. Journal of Power Sources, 2012, 205, 506.
112. Chen, C.-Y., et al., Charge–discharge behavior of a Na2FeP2O7 positive electrode in an ionic liquid electrolyte between 253 and 363K. Electrochimica Acta, 2014, 133, 583.
113. Chen, C.-Y., et al., Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. Journal of Power Sources, 2014, 246, 783.
114. Chen, C.-Y., et al., Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte. Electrochemistry Communications, 2014, 45, 63.
115. Chen, C.Y., et al., Full Utilization of Superior Charge-Discharge Characteristics of Na1.56Fe1.22P2O7 Positive Electrode by Using Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2014, 162, A176.
116. Terada, S., et al., Physicochemical properties of pentaglyme-sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Phys Chem Chem Phys, 2014, 16, 11737.
117. Fukunaga, A., et al., Performance validation of sodium-ion batteries using an ionic liquid electrolyte. Journal of Applied Electrochemistry, 2016, 46, 487.
118. Chen, C.-Y., et al., Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries. Journal of Power Sources, 2016, 332,51.
119. Wang, C.-H., C.-H. Yang, and J.-K. Chang, Suitability of ionic liquid electrolytes for room-temperature sodium-ion battery applications. Chemical Communications, 2016, 52, 10890.
120. Terada, S., et al., Dissociation and Diffusion of Glyme-Sodium Bis (trifluoromethanesulfonyl) amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. The Journal of Physical Chemistry C, 2016, 120, 23339.
121. Zhou, D., et al., In situ synthesis of hierarchical poly (ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45.
122. Yamamoto, T., et al., Thermodynamic studies on Sn–Na alloy in an intermediate temperature ionic liquid NaFSA–KFSA at 363 K. Journal of Power Sources, 2013, 237, 98.
123. Yamamoto, T., et al., Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide. Journal of Power Sources, 2012, 217,479.
124. Yamamoto, T., et al., Improved cyclability of Sn–Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte. Electrochimica Acta, 2014, 135, 60.
125. Yamamoto, T., et al., Charge–discharge behavior of Sn–Ni alloy film electrodes in an intermediate temperature ionic liquid for the electrolyte of a sodium secondary battery. Electrochimica Acta, 2016, 193, 275.
126. Yamamoto, T., et al., Electrochemical behavior of Sn–Fe alloy film negative electrodes for a sodium secondary battery using inorganic ionic liquid Na [FSA]–K [FSA]. Electrochimica Acta, 2016, 211, 234.
127. Shimizu, M., et al., Electrochemical Na-Insertion/Extraction Properties of Phosphorus Electrodes in Ionic Liquid Electrolytes. International Journal of Electrochemical Science, 2015, 10, 10132.
128. Usui, H., et al., Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery. Journal of Power Sources, 2016, 329, 428.
129. Wu, L., et al., Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochimica Acta, 2016. 203, 109.
130. Ding, C., T. Nohira, and R. Hagiwara, A high-capacity TiO2/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte. Journal of Materials Chemistry A, 2015, 3, 20767.
131. Wongittharom, N., et al., Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: Effects of Li salt at 25 °C and 50 °C. Journal of Power Sources, 2013, 240, 676.
132. Del Sesto, R.E., et al., Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochimica Acta, 2009, 491, 118.
133. Salgado, J., et al., Long-term thermal stability of some 1-butyl-1-methylpyrrolidinium ionic liquids. The Journal of Chemical Thermodynamics, 2014, 74, 51.
134. Lauw, Y., et al., Structure of [C4mpyr][NTf2] Room-Temperature Ionic Liquid at Charged Gold Interfaces. Langmuir, 2012, 28, 7374.
135. Wu, T.-Y., et al., Ionic conductivity and transporting properties in LiTFSI-doped bis (trifluoromethanesulfonyl) imide-based ionic liquid electrolyte. International Journal of Electrochemical Science, 2013, 8, 2606.
136. Kim, H., et al., Ab initio study of the sodium intercalation and intermediate phases in Na0. 44MnO2 for sodium-ion battery. Chemistry of Materials, 2012, 24, 1205.
137. Zhou, X., R.K. Guduru, and P. Mohanty, Synthesis and characterization of Na0.44MnO2 from solution precursors. Journal of Materials Chemistry A, 2013. 1, 2757.
138. Chen, L., et al., New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Scientific reports, 2013, 3, 1946.
139. Chen, C.-Y., et al., Charge–discharge behavior of a Na2FeP2O7 positive electrode in an ionic liquid electrolyte between 253 and 363K. Electrochimica Acta, 2014. 133, 583.
140. Zheng, H., et al., Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006, 44, 203.
141. Matsumoto, K., et al., Thermal and Transport Properties of Na[N(SO2F)2]–[N-Methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Na Secondary Batteries. The Journal of Physical Chemistry C, 2015, 119, 7648.
142. Han, S.C., et al., Non-crystalline oligopyrene as a cathode material with a high-voltage plateau for sodium ion batteries. Journal of Power Sources, 2014, 254, 73.
143. Iermakova, D., et al., On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. Journal of The Electrochemical Society, 2015, 162, A7060.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明