博碩士論文 101421049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.93.75.30
姓名 郭庭彰(Ting-chang Kuo)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 科技接受度與學習風格對於頭戴式虛擬實境應用在學習行為意圖的影響
相關論文
★ 美國軟體產業創新活動與財務效率分析★ Performance Measurements of Web 2.0, Social Media, and Mobile Apps for Municipal Emergency Management
★ 中國大陸股權結構與自願性財務預測之關聯性★ 我國半導體產業下游公司法人說明會對供應鏈上游公司投資現金流量敏感度的影響
★ 線上串流音樂服務之使用者抗拒意圖研究★ 從認知理論探討創業機會辨識對績效之影響
★ 影響Y世代消費者對智慧綠色產品購買意圖與使用意圖的因素:以智慧節能裝置為例★ Application of social media mining on the comparison between two-dimensional barcode and near field communication
★ 應用社群探勘技術分析城市之創業精神與新創公司的特性★ 電子發票巨量資料視覺化分析-以酒的消費為例
★ 應用文字探勘分析ERP之趨勢發展:以Twitter為例★ 社群媒體文字採礦之研究:以第三方物流公司為例
★ 應用文字探勘技術分析遊戲產業趨勢:以兩大遊戲展之相關推文為例★ 台灣有機食品消費與疾病死亡率之視覺化分析
★ 酒類消費與犯罪率之視覺化分析★ 零售業粉絲專頁分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過去已有許多文獻探討使用者對科技接受的各式模型,其中,個體間的差異影響科技使用的行為意圖之研究近年來亦逐漸受到重視,然而,這些研究大多是探討人格特質對於科技使用行為意圖的影響,但較少研究從學習風格的面向去作探討,因此,本研究旨在以整合性科技接受模型(Unified Theory of Acceptance and Use of Technology, UTAUT)和Kolb學習風格中的四個階段為理論架構,去探討大學生對於頭戴式虛擬實境(Virtual Reality Headset, VRH)應用在學習上的行為意圖。由於本研究著重在學習上的行為意圖,因此結合了UTAUT的績效期望、努力期望、社會影響、促進條件等四個構面與形成學習風格的具體經驗、反思觀察、抽象概念、主動實驗等四個階段來深入探討。本研究將VRH應用於教學上的影片結合至網路問卷並進行發放與蒐集,再利用結構方程模式分析模型架構的解釋能力與路徑因果關係。結果顯示學習風格中的四階段只有具體經驗會正向影響VRH應用在學習的行為意圖,而UTAUT的四構面,績效期望、努力期望、社會影響、促進條件皆會正向影響VRH應用在學習的行為意圖,對於學校或教育相關單位未來在設計或導入VRH相關課程時可以加強具體經驗、績效期望、努力期望、社會影響、促進條件的做法,提升使用者利用VRH來學習的行為意圖。
摘要(英) There have been many researches investigated varied models of technology acceptance, but the studies addressing the effects of the individual’s differences on the use of technology have received more attentions in recent years. However, most of these studies focus on the effects of personality traits on technology acceptance. There are relatively few researches discussing the issues of technology acceptance from the perspective of learning style. Hence, this study aims to integrate the Unified Theory of Acceptance and Use of Technology (UTAUT) and the four stages of Kolb’s learning style to investigate the factors affecting the students’ behavioral intention to use the virtual reality headset (VRH) in learning. The four stages of Kolb’s learning style, including concrete experience, reflect observation, abstract conception, and active experimentation, were considered in this study. Meanwhile, the four constructs of performance expectance, effort expectance, social influence, and facilitating condition from UTAUT were also included in the research model. Then, the hypotheses regarding whether the four stages of Kolb’s learning style and the four constructs of UTAUT significantly affect behavioral intention on using VRH in learning were proposed. This research has adopted structural equation model for the model construction and inference analysis to test the proposed hypotheses. The results show that only concrete experience of Kolb’s learning style has positive and significant effect on users’ behavioral intention to use the VRH in learning. On the other hand, all of the four constructs of UTAUT have positive and significant effect on users’ behavioral intention to use the VRH in learning. Accordingly, education institutions should find ways to strengthen these significant aspects in order to increase the behavioral intention of using VRH in learning.
關鍵字(中) ★ 虛擬實境
★ 整合性科技接受模型
★ 學習風格
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程與架構 4
第二章 文獻探討 5
2.1 虛擬實境(Virtual Reality) 5
2.2 學習風格(Learning Style) 8
2.3 整合性科技模型(Unified Theory of Acceptance and Use of Technology, UTAUT) 11
第三章 研究假設與方法 14
3.1 研究假設 14
3.1.1 學習風格與行為意圖 16
3.1.2 績效期望與行為意圖 17
3.1.3 努力期望與行為意圖 18
3.1.4 社會影響與行為意圖 18
3.1.5 促進條件與行為意圖 19
3.2 測量變數 20
3.2.1 學習風格 20
3.2.2 績效期望 24
3.2.3 努力期望 25
3.2.4 社會影響 26
3.2.5 促進條件 27
3.2.6 行為意圖 28
3.3 研究方法 29
第四章 研究結果與討論 35
4.1 敘述統計 35
4.2 信度分析 41
4.3 效度分析 42
4.4 結構方程模型分析 44
第五章 結論 48
參考資料 51
參考文獻 AbuShanab, E., Pearson, J. M., & Setterstrom, A. J. (2010). Internet banking and customers′ acceptance in Jordan: the unified model′s perspective. Communications of the Association for Information Systems, 26(1), 23.
Ajzen, I., & Fishbein, M. (1975). Understanding attitudes and predicting social. Behaviour. Englewood Cliffs, NJ: Prentice-Hall.
Al-Qeisi, K., Dennis, C., Alamanos, E., & Jayawardhena, C. (2014). Website design quality and usage behavior: Unified Theory of Acceptance and Use of Technology. Journal of Business Research, 67(11), 2282-2290. doi: 10.1016/j.jbusres.2014.06.016
Aldás-Manzano, J., Ruiz-Mafe, C., & Sanz-Blas, S. (2009). Exploring individual personality factors as drivers of M-shopping acceptance. Industrial Management & Data Systems, 109(6), 739-757.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411-423.
Anderson, J. E., & Schwager, P. H. (2004). SME adoption of wireless LAN technology: applying the UTAUT model.
Antonieta, Â. (2014). Immersive Simulation of Architectural Spatial Experiences. Blucher Design Proceedings, 1(7), 495-499.
Bandura, A. (1986). Social foundations of thought and action: Englewood Cliffs, NJ Prentice Hall.
Bandura, A. (1991). Human agency: The rhetoric and the reality.
Barnett, T., Pearson, A. W., Pearson, R., & Kellermanns, F. W. (2014). Five-factor model personality traits as predictors of perceived and actual usage of technology. European Journal of Information Systems.
Bell, J. T., & Fogler, H. S. (1996). Vicher: a virtual reality based educational module for chemical reaction engineering. Computer Applications in Engineering Education, 4(4), 285-296.
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205-229.
Bostrom, R. P., Olfman, L., & Sein, M. K. (1990). The importance of learning style in end-user training. Mis Quarterly, 14(1), 101-119.
Bozionelos, N. (1997). Psychology of computer use: XLIV. Computer anxiety and learning style. Perceptual and motor skills, 84(3), 753-754.
Burdea, G. (1999). Haptic feedback for virtual reality, keynote address of Proceedings of International Workshop on Virtual prototyping. Laval: France.
Burdea, G., & Coiffet, P. (2003). Virtual reality technology. Presence: Teleoperators and virtual environments, 12(6), 663-664.
Byrne, C., & Furness, T. A. (1994). Virtual reality and education. Paper presented at the Exploring a new partnership: Children, Teachers and Technology.
Carlsson, C., Carlsson, J., Hyvonen, K., Puhakainen, J., & Walden, P. (2006). Adoption of mobile devices/services—searching for answers with the UTAUT. Paper presented at the System Sciences, 2006. HICSS′06. Proceedings of the 39th Annual Hawaii International Conference on.
Chakaveh, S., Zlender, U., Skaley, D., Fostiropoulos, K., & Breitschwerdt, D. (1999). DELTA′s Virtual Physics Laboratory: a comprehensive learning platform on physics and astronomy. Paper presented at the Visualization ′99.
Cheong, J. H., Park, M.-C., & Hwang, J. (2004). Mobile payment adoption in Korea: Switching from credit card. Paper presented at the ITS 15th Biennial Conference, Berlin, Germany, September.
Chittaro, L., & Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. Computers & Education, 49(1), 3-18.
Chiu, C. M., & Wang, E. T. G. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201. doi: 10.1016/j.im.2008.02.003
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. Mis Quarterly, 19(2), 189-211.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Mis Quarterly, 13(3), 319-340.
Dede, C. (1995). The evolution of constructivist learning environments: Immersion in distributed, virtual worlds. Educational Technology, 35(5), 46-52.
Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note-how does personality matter? Relating the five-factor model to technology acceptance and use. Information systems research, 19(1), 93-105.
Dimitropoulos, K., Manitsaris, A., & Mavridis, I. (2008). Building virtual reality environments for distance education on the web: a case study in medical education. International Journal of Social Sciences, 2(1), 62-70.
DiTiberio, J. (1996). Education, learning styles, and cognitive styles. MBTI applications: A decade of research on the Myers-Briggs Type Indicator, 123-166.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. Mis Quarterly, 18(4), 453-461.
Du, X. (2014). Design and Evaluation of a Learning Assistant System with Optical Head-Mounted Display (OHMD). Carleton University Ottawa.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Freina, L., & Ott, M. (2015). A Literature Review on Immersive Virtual Reality in Education: State Of The Art and Perspectives. Proceedings of eLearning and Software for Education (eLSE)(Bucharest, Romania, April 23--24, 2015).
Georgiou, I., Zahn, C., & Meira, B. (2008). A systemic framework for case‐based classroom experiential learning. Systems Research and Behavioral Science, 25(6), 807-819.
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management science, 41(12), 1827-1844.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. Mis Quarterly, 19(2), 213-236.
Gregorc, A. F. (1979). LEARNING-TEACHING STYLES-POTENT FORCES BEHIND THEM: ASSOC SUPERVISION CURRICULUM DEVELOPMENT 1250 N PITT STREET, ALEXANDRIA, VA 22314-1453.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6): Pearson Prentice Hall Upper Saddle River, NJ.
Haller, M., Kurka, G., Volkert, J., & Wagner, R. (1999). omVR–A safety training system for a virtual refinery. Paper presented at the Topical Workshop on Virtual Reality and Advanced Human-Robot Systems.
Hanson, K., & Shelton, B. E. (2008). Design and Development of Virtual Reality: Analysis of Challenges Faced by Educators. Educational Technology & Society, 11(1), 118-131.
Hauptman, H., & Cohen, A. (2011). The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Computers & Education, 57(3), 2106-2117.
Hodgson, E., Bachmann, E., Waller, D., Bair, A., & Oberlin, A. (2012). Virtual reality in the wild: A self-contained and wearable simulation system. Paper presented at the Virtual Reality Short Papers and Posters (VRW), 2012 IEEE.
Houle, C. O. (1981). Continuing learning in the professions: Wiley Online Library.
Hunsaker, J. S. (1981). The experiential learning model and the Learning Style Inventory: An assessment of current findings. Journal of Experiential Learning and Simulation, 2(3), 145-152.
John, N. W. (2007). The impact of Web3D technologies on medical education and training. Computers & Education, 49(1), 19-31.
Jonassen, D. H. (2000). Transforming Learning with Technology: Beyond Modernism and Post-Modernism or Whoever Controls the Technology Creates the Reality. Educational Technology, 40(2), 21-25.
Jordanov, W. L. (2001). An Examination of the Relationship between Learning Style and Technology Use.
Kayes, D. C. (2005). Internal validity and reliability of Kolb’s learning style inventory version 3 (1999). Journal of Business and Psychology, 20(2), 249-257.
Keefe, J. W. (1979). Learning style: An overview. Student learning styles: Diagnosing and prescribing programs, 1-17.
Kim, J.-Y. (2013). Effects of Personality Traits and Kolb Learning Styles on Learning Outcomes in a Blended Learning Environment. International Journal of Digital Content Technology & its Applications, 7(13).
Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of management learning & education, 4(2), 193-212.
Kolb, A. Y., & Kolb, D. A. (2009). The Learning Way Meta-cognitive Aspects of Experiential Learning. Simulation & Gaming, 40(3), 297-327.
Kolb, D. A. (1976). Learning Style Inventory Technical Manual (Boston, Mcber and Company). KolbThe Learning Style Inventory: technical manual1976.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development (Vol. 1): Prentice-Hall Englewood Cliffs, NJ.
Komarraju, M., Karau, S. J., Schmeck, R. R., & Avdic, A. (2011). The Big Five personality traits, learning styles, and academic achievement. Personality and individual differences, 51(4), 472-477.
Korfiatis, K., Papatheodorou, E., Stamou, G., & Paraskevopoulous, S. (1999). An investigation of the effectiveness of computer simulation programs as tutorial tools for teaching population ecology at university. International Journal of Science Education, 21(12), 1269-1280.
Leonard-Barton, D., & Deschamps, I. (1988). Managerial influence in the implementation of new technology. Management science, 34(10), 1252-1265.
Li, J. P., & Kishore, R. (2006). How robust is the UTAUT instrument?: a multigroup invariance analysis in the context of acceptance and use of online community weblog systems. Paper presented at the Proceedings of the 2006 ACM SIGMIS CPR conference on computer personnel research: Forty four years of computer personnel research: achievements, challenges & the future.
Loeffler, C., & Anderson, T. (1994). The virtual reality casebook: John Wiley & Sons, Inc.
Luckey, P., Trexler, B. I., England, G., & McCauley, J. (2014). Virtual reality headset: Google Patents.
MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
Manolis, C., Burns, D. J., Assudani, R., & Chinta, R. (2013). Assessing experiential learning styles: A methodological reconstruction and validation of the Kolb Learning Style Inventory. Learning and Individual Differences, 23, 44-52.
Marchewka, J. T., & Kostiwa, K. (2007). An application of the UTAUT model for understanding student perceptions using course management software. Communications of the IIMA, 7(2), 10.
Mills, S., & de Araújo, M. M. T. (1999). Learning through virtual reality: a preliminary investigation. Interacting with Computers, 11(4), 453-462.
Nunnally, J. (1978)
.
Psychometric methods. New York: McGraw.
Nunnally, J. C., Bernstein, I. H., & Berge, J. M. t. (1967). Psychometric theory (Vol. 226): McGraw-Hill New York.
O′Connor, D., & Yballe, L. (2007). Team Leadership Critical Steps To Great Projects. Journal of Management Education, 31(2), 292-312.
Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28.
Pantelidis, V. S. (1993). Virtual reality in the classroom. Educational Technology, 33(4), 23-27.
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles concepts and evidence. Psychological science in the public interest, 9(3), 105-119.
Pfeifer, S., & Borozan, D. (2011). Fitting Kolb′s learning style theory to entrepreneurship learning aims and contents. International Journal of Business Research, 11(2), 216-223.
Roberts, M. L., & Wortzel, L. H. (1979). New life-style determinants of women′s food shopping behavior. The Journal of Marketing, 28-39.
Sahasrabudhe, V., & Kanungo, S. (2014). Appropriate media choice for e-learning effectiveness: Role of learning domain and learning style. Computers & Education, 76, 237-249.
Schumacker, R. E., & Lomax, R. G. (2004). A beginner′s guide to structural equation modeling: Psychology Press.
Shaw, R. S. (2012). A study of the relationships among learning styles, participation types, and performance in programming language learning supported by online forums. Computers & Education, 58(1), 111-120. doi: 10.1016/j.compedu.2011.08.013
Shih, Y.-C., & Yang, M.-T. (2008). A Collaborative Virtual Environment for Situated Language Learning Using VEC3D. Educational Technology & Society, 11(1), 56-68.
Sun, K.-t., Lin, Y.-c., & Yu, C.-j. (2008). A study on learning effect among different learning styles in a Web-based lab of science for elementary school students. Computers & Education, 50(4), 1411-1422.
Svendsen, G. B., Johnsen, J.-A. K., Almås-Sørensen, L., & Vittersø, J. (2013). Personality and technology acceptance: the influence of personality factors on the core constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32(4), 323-334.
Taxén, G., & Naeve, A. (2002). A system for exploring open issues in VR-based education. Computers & Graphics, 26(4), 593-598.
Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. Mis Quarterly, 19(4), 561-570.
Teo, T., & Noyes, J. (2014). Explaining the intention to use technology among pre-service teachers: a multi-group analysis of the Unified Theory of Acceptance and Use of Technology. Interactive Learning Environments, 22(1), 51-66. doi: 10.1080/10494820.2011.641674
Terrell, S. R. (2002). The effect of learning style on doctoral course completion in a Web-based learning environment. The Internet and Higher Education, 5(4), 345-352.
Thatcher, J. B., & Perrewe, P. L. (2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. Mis Quarterly, 26(4), 381-396.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
Venkatesh, V. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. 36(1).
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Mis Quarterly, 27(3), 425-478.
Virvou, M., & Katsionis, G. (2008). On the usability and likeability of virtual reality games for education: The case of VR-ENGAGE. Computers & Education, 50(1), 154-178.
Wang, K. H., Wang, T., Wang, W.-L., & Huang, S. (2006). Learning styles and formative assessment strategy: enhancing student achievement in Web‐based learning. Journal of Computer Assisted Learning, 22(3), 207-217.
Wolff, A. J. (2013). Quasi‐Experimental Evaluation Method for a Serious Game’s Learning Efficacy.
Wu, Y.-L., Tao, Y.-H., & Yang, P.-C. (2007). Using UTAUT to explore the behavior of 3G mobile communication users. Paper presented at the Industrial Engineering and Engineering Management, 2007 IEEE International Conference on.
王保進. (2006). 英文視窗版 SPSS 與行為科學研究 (三版).
吳明隆. (2007). SPSS 統計應用學習實務: 問卷分析與應用統計.
林心慧, & 張雲豪. (2009). 以 UTAUT 為基礎之消費者電子折價劵使用行為之預測模式: 直接與干擾效果: 中華管理評論國際學報.
梁朝雲, & 李恩東. (1998). 虛擬實境的發展與種類.
陳順宇. (2005). 多變量分析, 台北: 華泰.
指導教授 沈建文 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明