博碩士論文 101421055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.238.199.4
姓名 郭家瑋(Kuo Chia-Wei)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 探討弱連結對推薦效果的影響 -以旅遊業為例
(Applying weak tie theory to investigate the effect of friends’ recommendation on vacation destinations)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 利用資料探勘技術探討北台灣地區機動車輛稅費繳納模式★ 以資料挖礦方法發掘臍帶血品質診斷規則
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
近年來,旅遊業與社群網站的蓬勃發展,各種類型的旅遊相關之社群網站相
繼設立,若要能緊緊抓住用戶們的關注,旅遊社群業者應當從龐大的網路資訊中
提供客制化且準確的旅遊推薦訊息給各用戶,換言之,業者們必須直搗使用者心
坎,推薦並提供給使用者最有價值的建議,幫助使用者與最少的訊息共存,才能
讓用戶們創造出較佳的旅遊決定,藉此增進業者的營收。
然而,以往的文獻與研究所使用的推薦機制皆須在使用者有過選擇的紀錄後,
才能計算出要推薦的選項,但這樣的推薦機制卻無法跟上變化萬千的旅遊業。此
外,過往針對推薦機制上的研究較無考慮到人們在做決策時,關鍵因素之一便是
參考「口碑」,因此,本研究以人際關係程度-強連結與弱連結作為推薦用戶之
旅遊景點的考量因素,並比較該用戶之友誼的親疏程度對於最終該用戶對旅遊選
擇的影響力為何,又因Granovetter 學者指出「人際關係中弱連結扮演的是資訊
傳遞的要角」,所以本研究將以此假設為基礎,進一步探討弱連結的朋友是否扮
演重要的旅遊決策之影響角色。
本研究結果顯示出,弱連結的朋友比強連結的友人更具有旅遊資訊影響力,
換言之,用戶在搜尋新資訊時,會較傾向參考平時較疏遠的朋友之意見,因為這
些弱連結的朋友們掌握了不同領域的資訊,且這些關鍵資訊與該用戶較不重疊,
因此這些資訊的擁有者便能對該用戶佔有較高的影響力,進而影響使用者在旅遊
上的選擇;另外,本研究中亦證實用戶在選擇旅遊地點上確實會受到朋友推薦的
而產生變化,代表人際關係因素必須被考慮進旅遊地點推薦系統內,且弱連結的
朋友群必須給予更高的加權值!
關鍵字:弱連結、社群網站、口碑、推薦
摘要(英) ABSTRACT
Nowadays, the tourism industry and social network have grown rapidly, all kinds
of travel websites have been set up. To get the users′ attention, the tourism websites
should provide customized and accurate travel recommendations for their users and
help them make better travel decisions. However, previous recommendations required
the user’s browsing history records to generate recommended travel options. But this
mechanism is not suit able for the tourism industry, because travel information is
continuously updating.
In addition, when people make travel decisions they will seek information
through "word of mouth". This is the key point to why previous recommendation
methods are not useful now. Therefore, this study uses friendships degree - strong
and weak ties as recommendation elements, and compares the degree of friendships
on influencing the end user’s on travel decisions. Granovetter (1983) pointed out,
"The weak ties play a salient job for information derives". So this study is based on
his argument, and further explores whether the weak ties play an important role in
travel decisions.
This study’s results showed that when users plan travel destinations they will be
affected by their friend’s recommendations. In addition, this study proves that the
weak ties have more influence on the end user’s travel decision than strong ties. In
other words, when users search for travel information, they tend to take advice from
acquaintances into consideration, because their information does not overlap with the
end user. Hence, friends in weak ties have more influential effect the user’s travel
choices. So, friendships factor should be considered within the travel recommendation
system. Beside, friends in weak ties should be taken into higher consideration!
Keywords: Weak ties, Social network, Word of mouth, Recommendation
關鍵字(中) ★ 弱連結
★ 社群網站
★ 口碑
★ 推薦
關鍵字(英)
論文目次 目錄
摘要................................................................................................................................. i
ABSTRACT ................................................................................................................... ii
致謝.............................................................................................................................. iii
目錄............................................................................................................................... iv
圖目錄........................................................................................................................... vi
表目錄.......................................................................................................................... vii
第一章 緒論.................................................................................................................. 1
1-1 研究背景與動機 ............................................................................................ 1
1-2 研究目的 ........................................................................................................ 4
第二章 文獻探討........................................................................................................ 5
2-1 推薦系統 ......................................................................................................... 5
2-1-1 合作式協同過濾(Collaborative Filtering) .......................................... 5
2-1-2 內容基礎過濾(Content-based Filtering) ............................................ 6
2-2 社群網路 ......................................................................................................... 6
2-2-1 口碑行銷(Word of Mouth, WOM) ...................................................... 7
2-2-2 連結的力量 (Strength of Weak-tie) .................................................... 8
2-2-3 弱連結優勢理論 ................................................................................. 9
2-3 觀光旅遊產業 .............................................................................................. 11
2-3-1 旅遊服務業特性 ............................................................................... 11
2-3-2 旅遊社群網站- TripAdvisor ............................................................. 12
第三章 研究方法........................................................................................................ 15
3-1 研究假設 ...................................................................................................... 15
3-2 研究流程設計 .............................................................................................. 16
3-2-1 問卷設計 ........................................................................................... 16
v
3-2-2 研究樣本與資料蒐集 ....................................................................... 18
3-2-3 資料分析方法 ................................................................................... 21
第四章 資料分析與檢定............................................................................................ 24
4-1 樣本特性 ...................................................................................................... 24
4-2 假設檢定前檢驗 .......................................................................................... 26
4-2-1 朋友推薦影響力 ............................................................................... 26
4-2-2 受測者經推薦後的選擇 ................................................................... 27
4-3 假設檢定 ...................................................................................................... 27
4-3-1 以互動時間指標來看,連結強弱會對旅遊推薦有負向的影響 ... 28
4-3-2 以情感強度指標來看,連結強弱會對旅遊推薦有負向的影響 ... 28
4-3-3 以互惠行動指標來看,連結強弱會對旅遊推薦有負向的影響 ... 28
4-3-4 以親密程度指標來看,連結強弱會對旅遊推薦有負向的影響 ... 29
4-4 討論 .............................................................................................................. 30
第五章 結論與建議.................................................................................................... 32
5-1 研究結論 ...................................................................................................... 32
5-2 研究限制 ...................................................................................................... 33
5-3 未來研究建議 .............................................................................................. 34
參考文獻...................................................................................................................... 35
參考文獻 參考文獻
中文參考文獻:
[1]. 行政院研究發展考核委員會,(2010-9),我國觀光發展政策之研究。
[2]. 王熙哲, & 丁耀民. (2008). 人際關係網路對虛擬社群使用意願的影響. 資訊管理學
報, 第五卷第一期.
[3]. 交通部觀光局,(2013),2012 年國人旅遊狀況調查。
[4]. 張巧真,(2013),比較線上與非線上之推薦來源效果,國立東華大學國際企業學系,
2013 國際EPP 學術及實務研討會。
[5]. 曹勝雄,(2001),觀光行銷學,揚智出版社。
[6]. 陳昭宇,2005,根基於自我組織特徵映射圖為基礎最佳化演算法之推薦系統,國立
中央大學資訊工程研究。
[7]. 黃夙賢, & 林炳憲. (2010). 部落格好友關係之社會網路分析-以無名小站創作圖像
分類為例. Electronic Commerce Studies, 8(2), 209-230.
[8]. 黃鈁?,(2005),運用類神經網路預測新進顧客產品喜好之個人化商品推薦技術,
朝陽科技大學資訊管理系。
[9]. 廖儷霙,(1986-2),觀光行為一般模型之研究,文化大學出版部。
[10]. 羅淑娟,劉德敏,(2005) ,網友推薦系統之研發與建置,國立台北科技大學工業工
程與管理系,臺北科技大學學報第三十九之一期。
英文參考文獻:
[11]. Arndt, Johan A. (1967). Role of Product-Related Conversations in the Diffusion of a
New Product. Journal of Marketing Research, Vol.4, August, 291-295.
[12]. Al Mamunur Rashid. (2002-1).Getting to know you: Learning New User Preferences in
Recommender Systems. Proceedings of the 7th international conference on Intelligent
user interfaces.
36
[13]. Blackwell, Roger D, Miniard, Paul W, & Engel, James F. (2001). Consumer behavior,
9th. Harcourt College Publishers.
[14]. Bristor, Julia M. (1990). Enhanced Explanations of Word of Mouth Communications:
The Power of Relationships. Research in Consumer Behavior, Vol. 4, 51-83.
[15]. Bansal, H. S., & Voyer, P. A. (2000). “Word-of-mouth processes within a services
purchase decision context.” Journal of service research, 3(2), 166-177.
[16]. Barnes, John .(1954). "Class and Committees in a Norwegian Island Parish." Human
Relations, (7): 39-58.
[17]. Bhattacharjee, P. M. a. B. (2004). Using trust in recommender systems: An experimental
analysis. Paper presented at the iTrust2004 International Conference.
[18]. Bian, Y. (1994). Guanxi and the allocation of urban jobs in China. The China Quarterly,
140, 971-999.
[19]. Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of
consumer information. Journal of interactive marketing, 15(3), 31-40.
[20]. Borgs, C., Chayes, J.T., Immorlica, N., Jain, K., Etesami, O., and Mahdian, M.
(2007),“Dynamics of bid optimization in online advertisement auctions,” WWW
2007,531-540.
[21]. Brown, Jacqueline Johnson and Peter H. Reingen . (1987).Social Ties and
Word-of-Mouth Referral Behavior. Journal of Consumer Research, Vol. 14 (December),
350-362.
[22]. ComScore.(2013-6). Media Metrix for TripAdvisor Sites, worldwide.
[23]. Chatterjee, P. (2001). Online reviews: do consumers use them?. Advances in consumer
research, 28, 129-133.
[24]. Constant, D., L. Sproull and S. Kiesler. (1996).The kindness of strangers: The usefulness
of electronic weak ties for technical advice. Organization Science, 119-135.
[25]. Cross, R., & Cummings, J. N. (2004). Tie and network correlates of individual
37
performance in knowledge-intensive work. Academy of Management Journal, 47(6),
928-937.
[26]. Dale F. Duhan, Scott D. Johnson, James B. Wilcox, Gilbert D. Harrell.(1997).
Influemces on consumer use of word-of-mouth recommendation sources. Journal of the
Academy of Marketing Science, Volume 25, No. 4, 283-295.
[27]. Debnath, S., Ganguly, N., & Mitra, P. (2008, April). Feature weighting in content based
recommendation system using social network analysis. In Proceedings of the 17th
international conference on World Wide Web (pp. 1041-1042). ACM.
[28]. Fodness, D., & Murray, B. (1998). “A typology of tourist information search strategies.”
Journal of Travel Research, 37(2), 108-119.
[29]. Forrester Research .(2013).HOW BRANDED CONTENT WILL UNLOCK THE KEY
TO CONSUMER TRUST .From
http://www.forrester.com/How+Branded+Content+Will+Unlock+The+Key+To+Consum
er+Trust/-/E-PRE4784
[30]. Friedkin N. (1980). A test of structural features of Granovetter′s strength of weak ties
theory. Social Networks, 2: 411-442.
[31]. Gediminas Adomavicius, a. A. T. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 17(6).
[32]. Gilbert, E., & Karahalios, K. (2009, April). Predicting tie strength with social media. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.
211-220). ACM.
[33]. Google.(2013-7). Google Analytics, worldwide data.
[34]. Gelb, B., & Johnson, M. (1995). Word-of-mouth communication: Causes and
consequences. Journal of Health Care Marketing, 15(Fall), 54-58.
[35]. Han, J., Kamber, M., & Pei, J. (2006). Data mining: concepts and techniques. Morgan
38
kaufmann.
[36]. Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing
knowledge across organization subunits. Administrative science quarterly, 44(1), 82-111.
[37]. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic
word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate
themselves on the internet? . Journal of interactive marketing, 18(1), 38-52.
[38]. Herr, P.M., Kardes, F.R., & Kim, J. (1991). Effects of word-of-mouth and
product-attribute information on persuasion: An accessibility-diagnosticity perspective.
Journal of Consumer Research, 17(4), 454-462.
[39]. Jeacle, I., & Carter, C. (2011). In TripAdvisor we trust: Rankings, calculative regimes
and abstract systems. Accounting, Organizations and Society, 36(4), 293-309.
[40]. Keller, E., & Berry, J. (2003). The influentials: One American in ten tells the other nine
how to vote, where to eat, and what to buy. Free Press.
[41]. Kim, D. Y., Lehto, X. Y., & Morrison, A. M. (2007). Gender differences in online travel
information search: Implications for marketing communications on the internet. Tourism
Management, 28(2), 423-433.
[42]. Kotler, P., Bowen, J. T., & Makens, J. C.(2006). Marketing for Hospitality and Tourism,
4th Ed, 42.
[43]. Krackhardt, D., & Stern, R. N. (1988). Informal networks and organizational crises: An
experimental simulation. Social psychology quarterly, 51(2), 123-140.
[44]. Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating
role of trust in effective knowledge transfer. Management science, 50(11), 1477-1490.
[45]. Li, D., Lv, Q., Xie, X., Shang, L., Xia, H., Lu, T., & Gu, N. (2012). Interest-based
real-time content recommendation in online social communities. Knowledge-Based
Systems, 28, 1-12.
[46]. LIN, NAN, DAYTON, PAUL, AND GREENWALD, PETER .(1978). Analyzing the
39
Instrumental Use of Relations in the Context of Social Structure. Sociological Methods
and Research 7(2):149-166.
[47]. Marsden PV & Campbell KE. (1984). Measuring tie-strength.Social Forces, 63: 482-501.
[48]. Marsden, P. V., & Campbell, K. E. (1984). Measuring tie strength. Social forces, 63(2),
482-501.
[49]. Mathews, K. M., White, M. C., Long, R. G., Soper, B., & BERGEN, C. V. (1998).
Association of indicators and predictors of tie strength. Psychological Reports, 83(3f),
1459-1469.
[50]. Mcdonald, D. and Ackerman, M., (2000), Expertise recommendation: a flexible
recommendation system and architecture, In: Proceedings of the ACM Conference on
Computer Supported Cooperative Work, 231-240.
[51]. Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2), 81.
[52]. Mark S.Granovetter. (1973).The Strength of Weak Ties. American Journal of sociology
78(6)(May) , 1360-80.
[53]. Mark S.Granovetter. (1983).The Strength of Weak Ties: A Network Theory Revisited.
Sociological Theory 1, 201-33.
[54]. MICHAEL STELZNER.(2013-5). 2013 SOCIAL MEDIA MARKETING INDUSTRY
REPORT - How Marketers Are Using Social Media to Grow Their Businesses. Social
Media Examiner.
[55]. Murphy, J., & Olaru, D. (2009). “How information foraging styles relate to tourism
demographics and behaviours.” Journal of Vacation Marketing, 15(4), 299-309
[56]. P. Melvvie, R.J.Mooney,R. Nagarajan.(2002-7). Content-Boosted Collaborative Filtering
for Improved Recommendations, Proceedings of the18th National Conference on
Artificial Intelligence (AAAI-2002), Edinonton, Canada.
[57]. Park, S. T., Pennock, D., Madani, O., Good, N., & DeCoste, D. (2006, August). Naive
40
filterbots for robust cold-start recommendations. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining (pp.
699-705). ACM.
[58]. Pool, I. (1980). Comment on Mark Granovetter’s ‘The Strength of Weak Ties: A
Network Theory Revisited’. Presented at the Annual Meeting of the International
Communications Association, Acapulco, May.
[59]. Resnick,P.,Varian R.(1997-3).Recommender systems. Communication of the
ACM,40(3).
[60]. Smith T, Coyle J R, Lightfoot E, Scott A. (2007). Reconsidering models of influence: the
relationship between consumer social networks and word-of-mouth effectiveness.
Journal of Advertising Research, 47(4), 387
[61]. Smith, D.,Menon, S.,& Sivakumar, K. (2005). Online Peer and Editorial
Recommendations,Trust, and Choice in Virtual Markers,15-36.
[62]. Taiwan Facebook Statistics: User age distribution.(2014).From
http://www.socialbakers.com/facebook-statistics/taiwan
[63]. Tanimoto, J., & Fujii, H. (2003). A study on diffusion characteristics of information on a
human network analyzed by a multi-agent simulator. The Social Science Journal, 40(3),
479-85.
[64]. U. Shardanand, and P. Maes.(1995). Social Information Filtering: Algorithms for
Automating ‘Word of Mouth’, in Proceedings of the Conference on Human Factors in
Computing Systems (CHI95), 210-217.
[65]. Understanding Tourism: Basic Glossary. (2014). From
http://media.unwto.org/content/understanding-tourism-basic-glossary
[66]. World Economic Forum. (2013). Travel and Tourism Competitiveness Report.
[67]. Yoo, K. H., & Gretzel, U. (2008). What motivates consumers to write online travel
reviews? . Information Technology & Tourism, 10(4), 283-295.
指導教授 許秉瑜 審核日期 2014-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明