博碩士論文 101521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.233.217.242
姓名 江嘉偉(Jia-Wei Jiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
(High-Reliability and High-Speed (>25Gbit/sec) 850nm Vertical-Cavity Surface-Emitting Laser (VCSELs) for the Application of Optical Interconnect)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近來,我們開發850奈米垂直共振雷射(VCSEL)高可靠度高速(>25Gbit/sec)及窄光譜寬度和低功率損耗,主要有兩個重要的製程步驟,第一是鋅擴散第二是水氧化步驟,用來侷限光場及電流侷限在我們VCSEL架構上。而要在P-DBR得到好的鋅擴散輪廓,需要品質好的氮化矽薄膜,所以我們在不同的電漿氣象沉積機台做了不同的實驗來得到所要求的薄膜。關於水氧化實驗,主要問題是氧化孔大小的在晶圓上的均勻性,我們使用自製的水氧化系統做了測試,在3.5cm×3.5cm的範圍下所得到的誤差值為正負0.75um是相當好的均勻性。
我們開發獨特的製程架構及高品質850nm VCSELs晶圓,主要改變是將磊晶層成長在半絕緣基板上,及較短的共振腔(0.5)和再主動層加入了應力(15%),達到低操作電流(7.92 kA/cm2)和低能量數據傳輸比(EDR:224fJ/bit),以證明850奈米VCSEL在85 ℃的操作下可達到>41Gbit/sec傳輸,這成就將導致數據中心的通信蓬勃發展在市場上產生強烈衝擊。
摘要(英) In this work, we develop key steps for the mass production of high-reliability, high-speed (> 25 Gbit/sec), narrow spectral width, and low power consumption 850 nm vertical-cavity surface-emitting laser (VCSEL). There are two main unique fabrication steps of our VCSELs. One is Zn-diffusion and the other is wet-oxidation (relief) for optical and current-confined apertures in our VCSEL structure, respectively. In order to get well-controlled Zn-diffusion profile in the DBR layers of VCSEL to manipulate the number of optical modes inside cavity, a high-quality Si3N4 film has been developed by using different CVD systems and implemented in the device fabrication processes. Regarding with the wet-oxidation process, its major concern is in the uniformity of the aperture size across the whole wafer. A home-made wet-oxidation system has been developed to meet such challenge and a good uniformity (±0.75um) in the fabricated VCSEL wafers with (3.5cm×3.5cm) area has been demonstrated.
By use of the well-developed unique fabrication processes and high-quality 850 nm VCSELs wafers grown on semi-insulating GaAs substrate with short-l (0.5 ) cavity structure and highly strain active layers (15%), record low driving current density (7.92 kA/cm2) and record low energy to data rate ratio (EDR: 224fJ/bit) has been demonstrated for > 41 Gbit/sec operation of 850 nm VCSEL from room-temperature to 85 ℃ operations. This achievement would result in strong impact on the booming market of communication in data center.
關鍵字(中) ★ 半導體雷射
★ 垂直式共振腔雷射
關鍵字(英) ★ laser
★ VCSEL
論文目次 目 錄
摘 要 i
Abstract ii
致謝 iii
目 錄 iv
第一章 序論 1
1-1 簡介 1
1-2 光連結應用 1
1-3 面射型雷射簡介 2
1-4 面射型雷射的電流侷限 4
1-5 氧化層的結構技術 6
第二章 理 論 9
2-1 VCSEL的磊晶結構 9
2-2 鋅擴散於DBR 12
2-3 VCSEL的選擇性水氧化理論 16
2-4 水氧層掀離製作 18
2-5 高速單模態VCSEL製作 19
2-6 水氧化系統 24
2-7 IR系統 25
2-8 發散角 26
第三章 量測結果與討論 29
3-1量測系統 29
3-1-1. 電流對電壓(I-V)的量測 29
3-1-2. 光功率對電流(L-I)之量測 29
3-1-3. 遠場(Far field)之量測系統 30
3-1-4. 近場(Near field)投影之量測系統 30
3-1-5. 頻譜(Spectrum) 之量測系統 31
3-1-6. 頻寬(Bandwidth)之量測系統 31
3-1-7. 眼圖(Eye pattern)之量測系統 32
3-2水氧化掏離可靠度分析與量測 34
3-2-1. VCSEL元件結構圖 34
3-2-2. 電流對電壓(I-V)及輸出光功率對電流 (L-I)曲線 35
3-2-3. 光頻譜(Optical spectra)圖 37
3-2-4. 頻寬(Bandwidth) 38
3-2-5.可靠度測試(Life time) 39
3-3氧化孔徑(Oxide aperture)與頻率響應的量測 41
3-3-1.氧化孔徑與頻率響應關係 41
3-4共振腔(Cavity)改變及量子井加入應力(strain)驗證與量測 45
3-4-1.共振腔長度縮短及量子井加入應力(strain)原理 45
3-4-2.改變共振腔長度使用GaAs Quantum well元件量測比較 47
3-4-3.使用AlInGaAs Quantum well的元件量測 53
3-4-4.Benchmark 59
第四章 結論與未來研究 60
Reference 61
附錄A 1
附錄B 2

圖目錄
圖 1-2-1.台灣4G通訊標誌[1] 2
圖 1-2-2.構成光纖通訊的主要元件[2] 2
圖 1-3-1.面射型和邊射型雷射 4
圖1-4-1.四種VCSEL電流侷限結構。(a)蝕刻空氣柱結構、(b)離子佈植式結構、(c)再成長淹埋異質結構、(d)氧化侷限式結構。[4] 6
圖1-5-1. VCSEL氧化層結構 (a)退化型VCSEL氧化層線缺陷往量子井方向TEM側面圖、(b)氧化畫層線缺陷TEM俯視圖。 7
圖1-5-2. VCSEL氧化層結構 (a)尖端氧化層、(b)多層氧化層、(c)氧化層離量子井數個DBR 7
圖1-5-3. VCSEL氧化層結構 (a)未氧化掏離的元件、(b)經過氧化掏離後的元件。 8
圖2-2-1.經過鋅擴散後的DBR反射率與鋅擴散深度關係[8-10] 13
圖2-2-2.於共振腔結構中產生的多模與放射單模雷射光束示意圖 13
圖2-2-4. (a)為設定溫度於650度時,擴散30分鐘的SEM。由圖可知, 15
鋅擴散下向深度約為2μm,橫向約為1μm。(b)擴散20分鐘。 15
圖2-3-1.氧化層模與共振腔模同時出現互相影響 18
圖2-5-1.共振頻率提升示意圖 19
圖2-5-2.單模及多模VCSEL資料傳輸之示意圖 20
圖2-5-3. (a)surface relief[26-27] (b) triangular holey [28] (c) Implant[29] 21
圖2-5-4.氧化孔徑與鋅擴散孔徑比較示意圖 21
圖2-5-5.SHB示意圖 22
圖2-5-6.國外實驗室所發表之單膜面射型雷射[35] 22
圖2-5-7.漸變水氧化層結構[31] 23
圖2-6-1 水氧化系統示意圖 24
圖2-7-1 IR系統示意圖 25
使用IR系統觀察850nm VCSEL氧化孔徑圖 26
圖2-8-1.遠場發散角的發散示意圖 26
圖3-1-1.I-V量測系統 29
圖3-1-2.L-I量測系統 30
圖3-1-3.遠場量測系統 30
圖3-1-4.近場投影量測系統 31
圖4-1-5. 頻譜量測系統 31
圖3-1-6. 頻寬量測系統 32
圖3-1-7. 眼圖量測系統 33
圖3-2-1.(a)VCSEL元件頗面結構圖(b)VCSEL元件俯視圖 34
圖3-2-2.(a)IR顯微鏡觀察氧化孔徑大小(b)將Al2O3掏離SEM結面圖 35
圖3-2-3.增益峰值與F-P峰值的移動[41] 36
圖3-2-4.Device A & B 有無水氧化層掏離(Relief)元件比較 37
圖3-2-5.(a)Device A 電流2、4、6、8mA相對光頻譜(optical spectra) 38
(b) Device B 電流2、4、6、8mA相對光頻譜(optical spectra) 38
38
圖3-2-6. (a)Device A 頻率響應圖, (b)Device B 頻率響應圖 38
圖3-2-7. (a)Device A 輸出功率衰減比例圖, (b)Device B 輸出功率衰減比例圖 41
圖3-3-1.元件C、D、E的L-I曲線 42
圖3-3-2.元件C、D、E的光頻譜(optical spectra) 42
圖3-3-3.元件C、D、E的頻率響應 43
圖3-4-1. InGaAs/GaAs E-K能帶似意圖[42] 45
圖3-4-2. (a)GRIN-SCH半導體雷射結構之電場分佈圖(b)SCH結構電場分佈圖 46
圖3-4-3. 元件I、F的L-I曲線 48
圖3-4-4 元件I、F的4mA、6mA、8mA、相對光頻譜(optical spectra) 48
圖3-4-5 元件I、F的頻率響應圖 48
圖4-4-6.SHB示意圖 50
圖3-4-7 元件C、G的L-I曲線 52
圖3-4-8 元件C、G的相對光頻譜(optical spectra) 53
圖3-4-9 元件C、G的頻率響應圖 53
圖3-4-10 元件H的L-I-V曲線 54
圖3-4-11 元件H的頻譜圖 55
圖3-4-12 (a)元件H在室溫上的頻響圖(b) 元件H在85℃上的頻響圖 55
圖3-4-13 元件H在3.5mA41Gbit/sec (BTB)傳輸 56
圖3-4-14 元件H在41Gbit/sec (BTB) 速率下BER分析圖 56
圖3-4-15 元件H在41Gbit/sec (100公尺) 速率下BER分析圖 57




表目錄
表2-1. IQE晶片之詳細資料 11
表3-2-1.鋅擴散深度與氧化孔徑比較表 34
表3-2-2.大訊號眼圖比較表 39
表3-2-3.燒測狀態圖表 40
表3-2-4.元件C、D、E條件表 41
表3-2-5.元件C、D、E 25Gbit/sec,及E的12.5Gbit/sec BTB眼圖 44
表3-4-1 元件I、F條件表 47
表3-4-2 元件C、G條件表 52
表3-4-3 元件H條件表 53
表3-4-4 元件H大訊號41Gbit/sec傳輸BTB及100公尺 56
表3-4-5 元件H在85℃ 41Gbit/sec (BTB)眼圖 58
表3-4-6 高速元件40Gbit/sec以上團隊比較[46] 59


參考文獻 [1] 黃嬿,“4G 頻譜搶得兇,美欲改變頻譜競標規則,” 科技新報,西元2014年4月21號.
[2] 王心平,“利用射頻技術實現混合乙太數位及射頻訊號之單波長光纖通訊系統,”國立中央大學通訊研究所論文(民國94年).
[3] S. Nakagawa, D. Kuchta,C. Schow, R John, A .Larry .Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb., 2008.
[4] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared
and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum Electronics, vol. 33, no. 10,pp. 1810-1824, Oct.,1997.
[5] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting laser:Moving from research to manufacturing,”Proc. IEEE, vol. 85, no. 11,pp. 1730-1739, Nov., 1997.
[6] Y-C chang, L. A. Coldrem “Effocoent,High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 15, no.3, pp.704-715, May., 2009.
[7] Y. Mohammad “Optimizing Optical output power of single-mode vcsels using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 19, no. 4 , July., 2013.
[8] 顏志成,“具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,” 國立中央大學研究所論文(民國101)
[9] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo,, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE Journal of Quantum Electronic, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[10] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sept., 1990.
[11] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[12] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[13] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[14] J. A. Van Vechten, “ Intermixing of an AlAs-GaAs superlattice by Zn diffusion ,” J. Appl. Phys. vol 55, no.10, pp.7082-7084, Oct., 1984.
[15] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ”Appl. Phys. Lett., vol. 38, no.10, pp. 776-778 , May,1981.
[16] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[17] 陳志誠,“穩態單橫模和穩定極化的面射型雷射,”國立台灣大學電機工程學系博士論文 (民國90年)
[18] R. G. Hunsperger, Integrated Optics: Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[19] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlxAs ,” Appl. Phys. Lett., vol 47, no.11, pp.1193-1195, 1985.
[20]C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[21] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec .,1965.
[22] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InPstrained multilayer heterostructures,” J. Appl. Phys., vol. 72,p. 5213, 1992.
[23] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, June, 1997.
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[25] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[26] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937 ,1996.
[27] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, June, 1996.
[28] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, 1995.
[29] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[30] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12, 2007.
[31] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[32] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[33] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604, Aug. , 2005.
[34] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh ,T.Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. , 2004.
[35] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[36] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. ,vol. 25, no.18, pp. 1823–1825, 2013.
[37] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers, ” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan., 2003.
[38] H. A. Haus, “Waves and Fields in Optoelectronics,” Preritice-Hall, Englewood Cliffs, NJ, p.99, 1984 .
[39] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[40] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[41] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
[42] 綦振瀛教授“Bandstructure Modifications,”化合物半導體講義,國立中央大學講座教授(民國102年).
[43] L. A. Coldren, S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” Wiley , p.223, October, 1995.
[44] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun., 2004.
[45] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, pp. 1225-1227, Sep., 2012.
[46] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, Anders Larsson, “High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 °C,” IEEE Photon. Technol. Lett., vol. 25, no. 8, April, 2013.

指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明