博碩士論文 101521009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.223.196.59
姓名 賴政宏(Cheng-Hung Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
(Design and Analysis of Ultra-High Speed Photodiode and Flip-Chip Bonding Package for Reliable High-Power Operation from DC to 300GHz Operating Frequency)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 對於覆晶式鍵合封裝設計與分析的應用在近彈道單載子傳輸光偵測器(NBUTC-PD)上,從DC到300GHz的頻寬可獲得可靠高功率是已經被證實了。根據我們模擬與量測結果指出,當操作頻率超過100GHz時對於覆晶式鍵合結構的幾何尺寸,在速度與輸出功率的表現就變成主要的限制參數。為了克服這些問題,在鍵合過程中氮化鋁基板底座的錫金柱子必須盡可能的接近磷化銦基板上PD的主動區,利用控制距離比較更長的間距(~25 VS.90μm),我們元件不僅表現出更寬的頻寬(225 VS.200GHz)而且還有更高的飽和電流(13 VS.9mA),NBUTC-PD 在這樣一個優化的覆晶式鍵合結構封裝,操作頻率在260GHz操作下,有一個寬的頻帶(~225GHz)、高飽和電流(13mA)和0.67mW最高輸出功率已經同時實現了。
摘要(英) Design and analysis of the flip-chip bonding package for near-ballistic uni-traveling-carrier photodiodes (NBUTC-PDs) with reliable high-power performance from dc to sub-THz (~300 GHz) frequency has been demonstrated. According to our simulation and measurement results, the geometric size of flip-chip bonding structure becomes a major limitation in speed and output power when the operating frequency is over ~100 GHz. In order to overcome this problem, the position of Au/Sn bump on bottom AlN substrate for bonding process, must be as close as possible with the active PD mesa on the InP substrate at topside. Compared with the control with a longer spacing (~90 vs. 25 m), our device not only exhibits a broader bandwidth (225 vs. 200 GHz) but also a higher saturation current (13 vs. 9 mA). With such an optimized flip-chip bonding structure for package of NBUTC-PD, a wide 3-dB bandwidth (~225 GHz), high saturation current (13 mA), and a 0.67 mW maximum output power at 260 GHz operating frequency have been achieved simultaneously.
關鍵字(中) ★ 光偵測器
★ 超高速
★ 製程
關鍵字(英)
論文目次 摘要 v
Abstract vi
致謝 vii
目錄 ix
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 光偵測器之發展與應用 1
1.2 封裝技術的種類 5
1.3 選擇適合的封裝技術 9
1.4 覆晶結合技術 13
1.5 元件的應用 16
1.6 論文動機與架構 20
第二章 彈道傳輸單載子光偵測器設計 22
2.1 傳統P-I-N光偵測器工作原理 22
2.2 單載子傳輸光偵測器工作原理 24
2.3 單載子傳輸光偵測器之結構設計 28
第三章 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程步驟與底座製程步驟 32
3.1 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程 32
3.2 CPW及傳輸器底座電路製程 54
3.3 元件與傳輸線基板結合(Flip-Chip Bond) 63
第四章 彈道傳輸單載子光偵測器之量測與結果討論 65
4.1 Heterodyne-Beating 量測系統之架設 66
4.2 頻寬量測結果 67
4.3 高功率產生量測結果 72
第五章 結論與未來研究方向 73
參考文獻 75
附錄 79

參考文獻 [1] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito,H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54,no. 5, pp. 1937-1944, May, 2006.
[2] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans.Microwave Theory Tech., vol. 47,no. 7,pp. 1265-1281, Jul., 1999.
[3] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, J.-Y. Lu, C.-K. Sun, and C.-L. Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance,” IEEE Photon. Technol. Lett, vol. 17,no. 8, pp. 1722-1724, Aug., 2005.
[4] T.-H. Stievater and K.-J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16,no. 1, pp. 239-241, Jan., 2004.
[5] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A.-L. Holmes, and J-C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power,” IEEE Photon. Technol. Lett, vol. 18,no. 23,pp. 2526-2528, Dec. 2006.
[6] N. Duan, X. Wang, N. Li, H.-D. Liu, and J.-C. Campbell
“Thermal Analysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec., 2006.
[7] J. Das, H. Oprins, H. Ji, A. Sarua, W. Ruythooren, J. Derluyn, M. Kuball, M. Germain, and G. Borghs, “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700,Nov., 2006.
[8] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi,“High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,”IEEE J. of Sel. Topics in Quantum Electronics, vol. 10,no. 4, pp. 709-727, Jul./Aug.2004.
[9] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23,No. 12, pp. 4016-4021, Dec., 2005.
[10] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-Speed,High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17,no. 9,pp. 1929-1931, Sep., 2005.
[11] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical Modeling of a
High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 18 no.8, pp. 938-940, Apr., 2006.
[12] N. Li, X. Li, S. Demiguel, X. Zheng, J.-C. Campbell, D.-A. Tulchinsky, K.-J. Williams, T.-D. Isshiki, G.-S. Kinsey, and R. Sudharsansan,“High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16,no. 3, pp.864-866, Mar., 2004.
[13] B.-S. Kumar, M. Sivakumar, R. Malliah, L. Ming, S.- K. Yew, James ASM Technology Singapore, “Process Characterization of Cu & Pd Coated Cu Wire Bonding on Overhang Die:Challenges and Solution,” IEEE Electronics Packaging Technology Conference. Lett., pp.859-867, Dec., 2010
[14] C.-H. Tung. Y.-S. Kuo, and S.-M. Chang, “Tape Automated Bonding Inner Lead Bonded Devices (TAB/ILB) Failure Analysis, ” IEEE Transactions on Components Hybirds and Manufacturing Technology. Lett.,Vol. 16,no. 3, pp.304-310,May, 1993.
[15] F. Wang, Y. Chen, and L. Han, “Ultrasonic Vibration at Thermosonic Flip-Chip Bonding Interface, ” IEEE Transactions on Components,Packaging and Manufacturing Technology. Lett.,vol. 1, no. 6,pp.852-857,June, 2011
[16] F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet,Y. Robert, M.-J. Fice, C.-C. Renaud, A. Jimenez, and G. Carpintero,“Integrated InP Heterodyne Millimeter Wave Transmitter,”in IEEE Photonics Technology Lett., vol. 26, no. 10, May, 2014
.
[17] H.-J. Song, Membe IEEE, Katsuhiro Ajito, Member, IEEE, Yoshifumi Muramoto, Atsushi Wakatsuki, Tadao Nagatsuma, Senior Member, IEEE, and Naoya Kukutsu, Member, IEEE,“Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW,” IEEE Microwave and Wireless Components Lett., vol. 22,no. 7, pp.363-365, July, 2012
[18] 安立知股份有限公司,VectorStar ME7838系列寬頻向量網路分析儀,台灣安立知(ANRITSU COMPANY, INC.) 產品介紹,2014年
[19] T. Otsuji, N. Sahri, N. Shimizu, T. Nagatsuma, and T. Ishibashi, “A
105-GHz bandwidth optical-to-electrical conversion stimulus probe
head employing a unitraveling-carrier photodiode,” IEEE Photon.
Technol. Lett., vol. 11,no. 8, pp. 1033–1035, Aug., 1999.
[20] T. Nagatsuma, A. Hirata, Y. Royter, M. Shinagawa, T. Furuta, T.
Ishibashi, and H. Ito, “A 120-GHz integrated photonic transmitter,” in Microwave Photon. Tech. Dig., pp. 225–228,2000.
[21] A. Hirata, “Design and characterization of millimeter-wave antenna for integrated photonic emitter,” in Proc. Asia–Pacific Microwave Conf., pp. 70–73,1999.
[22] B. Ke, T. Chau, Y. Qian, M. Wu, and T. Itoh, “Tapered slot antenna
with velocity-matched distributed photodetector,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1241–1244,1998.
[23] G. A. Chakam and W. Freude, “Coplanar phased array antenna with
optical feeder and photonic bandgap structure,” IEEE Microwave Photon. Tech. Dig., pp. 1–4, 1999.
[24] N. Sahri and T. Nagatsuma, “Application of 1.55μm photonic technologies to practical millimeter-wave network analyzer,” IEICE Trans. Electron., vol. E82-C, pp. 1307–1311, 1999.
[25] N. Sahri and T. Nagatsuma, “Packaged photonic probes for an on-wafer broad-band millimeter-wave network analyzer,” Photon. Technol. Lett., vol. 12,no. 12, pp. 1225–1227, Sep., 2000.
[26] J.-W. Shi, J.-M. Wun, F.-W. Lin, and J. E. Bowers,
“Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW,” IEEE Microwave and Wireless Components Lett., vol. 22, no. 7,pp.363-365, July, 2012
[27] S.-M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[28] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, no. 4,pp. 709–727, Jul./Aug., 2004.
[29] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10,no. 3, pp. 412-414, Mar., 1998.
[30] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” NPG Asia Materials, vol. 3, no. 2, pp. 41-48, April, 2011.
[31] A. Beling, H.-G. Bach, G.-G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb., 2007.
[32] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36,no. 21,pp. 1809-1810, Oct., 2000.
[33] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23,no. 12, pp. 4016-4021, Dec., 2005.
[34] J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46,no. 1, pp. 80-86, Jan., 2010.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明