博碩士論文 101521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.66.217
姓名 鮑建佑(Chien-Yu Pao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高崩潰電壓氮化鋁鎵/氮化鎵金屬-絕緣層-半導體場效電晶體之研製
(Growth and Fabrication of High Breakdown Voltage AlGaN/GaN Metal-Insulator-Semiconductor Field Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要為探討利用MOCVD磊晶的方式來提升其金屬-絕緣層-半導體場效電晶體之截止區崩潰特性。首先藉由增加緩衝層厚度的方式提升其元件截止區特性,在氮化鎵緩衝層厚度為4.6 μm,閘極至汲極間距為20 μm的規格下獲得元件截止區崩潰電壓960 V,因試片邊緣裂縫區域過大使磊晶試片有效面積降為65%,因此將研究重心轉變為如何降低磊晶層厚度並維持相同元件特性;根據文獻搜尋結果和MOCVD機台限制選擇使用鋁含量為5%之氮化鋁鎵作為緩衝層材料,並與氮化鎵緩衝層進行比較,在相同緩衝層厚度的情況下,氮化鎵之元件截止區崩潰電壓為795 V,氮化鋁鎵則為705 V,而從截止區電壓電流特性來看,氮化鋁鎵緩衝層之漏電流明顯大於氮化鎵,其原因為氮化鋁鎵磊晶層缺陷密度過高所致,其MOCVD之磊晶參數尚待調整。
根據前段結論,元件截止區特性皆會受到磊晶層缺陷密度影響,因此設計新結構:利用低溫成長之氮化鋁薄鏌提升其上之氮化鎵緩衝層品質,在相同的元件規格之下,未使用低溫成長氮化鋁薄鏌之元件截止區崩潰電壓為795 V,而在氮化鎵間插入低溫成長氮化鋁薄鏌之元件截止區崩潰電壓達926 V,提升幅度約16%。除了元件特性提升之外,截止區特性滿足空間電荷限制電流理論進一步釐清截止區電流曲線之成因。
摘要(英) This thesis focus on the enhancement of off-state breakdown voltage of AlGaN/GaN Metal-Insulator-Semiconductor Field Effect Transistors (MIS-FETs) by using MOCVD grown different epitaxy structures on Si.
With increasing GaN buffer layer up to 4.6 μm thick, the fabricated AlGaN/GaN MIS-FETs off-state breakdown voltage is up to 960 V at LGD = 20 μm, while the 2.5 μm GaN thick buffer layer has 795 V device breakdown voltage. However, with increasing buffer layer thickness, the edge crack extends to 1.5 cm, which means only 65% area of 6-inch silicon substrate is available. For the purpose of enhance wafer area efficiency, several ways were surveyed to improve devices characteristics without extend buffer layers thickness. The first selection is 5% Al-content AlGaN as buffer layer. 5% AlGaN has off-state breakdown 705 V while GaN buffer layer equips 795 V, which was because dislocation densities serious affect off-state leakage path and breakdown voltage, growth condition of 5% AlGaN need to be optimized.
From previous results, that is the dislocation densities seriously affect device off-state characteristics, the growth of AlN interlayer experiment was designed for enhancing epitaxial quality. Which improved the devices breakdown voltage from 795 V to 926 V, about 16% breakdown voltage enhancement. Furthermore, off-state I-V curve of the devices fitted the theory of Space Charge Limited Current, which advanced understanding of the cause of the devices off-state leakage current formation.
關鍵字(中) ★ 氮化鎵
★ 功率元件
關鍵字(英) ★ MOCVD
★ HEMTs
論文目次 論文摘要........................................................................I
Abstract.......................................................................II
目錄.............................................................................IV
圖目錄.........................................................................VI
第一章 緒論................................................................. 1
1.1 前言....................................................................................................... 1
1.2 氮化鎵功率元件發展現況................................................................... 3
1.3 氮化物成長於矽基板之簡介............................................................... 4
1.4 研究動機與論文架構 .......................................................................... 7
第二章 實驗方式與原理介紹..................................... 8
2.1 有機金屬化學氣相沉積儀介紹........................................................... 8
2.2 磊晶試片缺陷分析系統介紹.............................................................. 11
2.3 元件製作流程及量測系統介紹......................................................... 13
2.3.1 緩衝層耐壓測試試片製作流程 ............................................... 13
2.3.2 氮化鎵金屬-絕緣層-半導體場效電晶體製作流程 ................. 15
2.3.3 量測系統介紹 .......................................................................... 19
第三章 不同磊晶層結構之元件特性研究............... 21
3.1 前言.................................................................................................... 21
3.2 磊晶層厚度對於元件截止區之特性探討 .......................................... 21
3.3 不同緩衝層材料對於元件截止區之特性探討 .................................. 27
3.4 不同磊晶層位置使用氮化鋁磊晶層對於元件截止區崩潰電壓之影響
及分析....................................................................................................... 36
3.5 場效電晶體截止區漏電流及崩潰電壓機制分析.............................. 51
第四章 結論............................................................... 58
參考文獻..................................................................... 60
參考文獻 [1] S. Chowdhury and U. K. Mishra, "Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure," IEEE Transactions on Electron Devices, vol. 60, pp. 3060-3066, 2013.
[2] A. Krost, A. Dadgar, J. Bläsing, A. Diez, T. Hempel, S. Petzold, J. Christen, and R. Clos, "Evolution of stress in GaN heteroepitaxy on AlN∕Si(111): From hydrostatic compressive to biaxial tensile," Applied Physics Letters, vol. 85, p. 3441, 2004.
[3] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, "Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon," physica status solidi (c), vol. 0, pp. 1583-1606, 2003.
[4] Z. Liliental-Weber and D. Cherns, "Microstructure of laterally overgrown GaN layers," Journal of Applied Physics, vol. 89, p. 7833, 2001.
[5] K. Cheng, M. Leys, S. Degroote, B. Daele, S. Boeykens, J. Derluyn, M. Germain, G. Tendeloo, J. Engelen, and G. Borghs, "Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers," Journal of Electronic Materials, vol. 35, pp. 592-598, 2006.
[6] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Applied Physics Letters, vol. 68, p. 643, 1996.
[7] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, "1.4-kV Breakdown Voltage for AlGaN/GaN High-Electron-Mobility Transistors on Silicon Substrate," IEEE Electron Device Letters, vol. 33, pp. 1375-1377, 2012.
[8] D. Visalli, M. Van Hove, J. Derluyn, S. Degroote, M. Leys, K. Cheng, M. Germain, and G. Borghs, "AlGaN/GaN/AlGaN Double Heterostructures on Silicon Substrates for High Breakdown Voltage Field-Effect Transistors with low On-Resistance," Japanese Journal of Applied Physics, vol. 48, p. 04C101, 2009.
[9] A. Denton and N. Ashcroft, "Vegard’s law," Physical Review A, vol. 43, pp. 3161-3164, 1991.
[10] Y. C. Choi, M. Pophristic, H.-Y. Cha, B. Peres, M. G. Spencer, and L. F. Eastman, "The Effect of an Fe-doped GaN Buffer on off-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate," IEEE Transactions on Electron Devices, vol. 53, pp. 2926-2931, 2006.
[11] S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, "C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE," Journal of Crystal Growth, vol. 298, pp. 831-834, 2007.
[12] C. H. Seager, A. F. Wright, J. Yu, and W. Götz, "Role of carbon in GaN," Journal of Applied Physics, vol. 92, p. 6553, 2002.
[13] D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, "Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN," Journal of Crystal Growth, vol. 242, pp. 55-69, 2002.
[14] A. Vescan, H. Hardtdegen, N. Ketteniß, M. Eickelkamp, A. Noculak, J. Goliasch, M. v. d. Ahe, H. L. Bay, T. Schäpers, H. Kalisch, D. Grützmacher, and R. H. Jansen, "Study on growth and electrical performance of double-heterostructure AlGaN/GaN/AlGaN field-effect-transistors," physica status solidi (c), vol. 6, pp. S1003-S1006, 2009.
[15] A. Reiher, J. Bläsing, A. Dadgar, A. Diez, and A. Krost, "Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers," Journal of Crystal Growth, vol. 248, pp. 563-567, 2003.
[16] P. Vennéguès, Z. Bougrioua, J. M. Bethoux, M. Azize, and O. Tottereau, "Relaxation mechanisms in metal-organic vapor phase epitaxy grown Al-rich (Al,Ga)N∕GaN heterostructures," Journal of Applied Physics, vol. 97, p. 024912, 2005.
[17] M. Lampert, "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps," Physical Review, vol. 103, pp. 1648-1656, 1956.
[18] M. J. Uren, K. J. Nash, R. S. Balmer, T. Martin, E. Morvan, N. Caillas, S. L. Delage, D. Ducatteau, B. Grimbert, and J. C. De Jaeger, "Punch-through in short-channel AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 53, pp. 395-398, 2006.
[19] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, and E. A. Preble, "Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier," Journal of Applied Physics, vol. 101, p. 024506, 2007.
[20] M. Wang and K. J. Chen, "Off-State Breakdown Characterization in AlGaN/GaN HEMT Using Drain Injection Technique," IEEE Transactions on Electron Devices, vol. 57, pp. 1492-1496, 2010.
[21] C. Zhou, Q. Jiang, S. Huang, and K. J. Chen, "Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si structures," pp. 245-248, 2012.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明