博碩士論文 101521017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.145.166.7
姓名 彭良軒(Liang-Shuan Peng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦鎵穿隧式場效電晶體元件製作與特性研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文內容提要
著眼於未來次世代電晶體元件的綠能微縮發展,量子穿隧式場效電晶體以穿隧效應產生電流,該電晶體僅需小操作電壓(約0.5 V)下即可進行工作。該元件有極佳的開關切換特性、低的次臨限擺幅、關閉時很低的漏電流與低功率損耗等優點。於矽基材半導體的穿隧電晶體開發中,有鑑於追求更低的功率損耗與操作偏壓,因III-V族半導體具有低能隙更容易產生穿隧機制獲得更低的操作偏壓。且III-V族材料有其可調控能帶接合之優點,故本論文著重於開發III-V族化合物半導體之穿隧式場效電晶體。
本論文所使用的磊晶結構為p-i-n摻雜的砷化銦鎵材料,其中銦的成分比例為53%,鎵的比例佔47%。在此砷化銦鎵的穿隧式場效電晶體結構中,為了達到穿隧機制須有p+重摻雜的源極與n+摻雜的汲極。本論文製作之磊晶晶片源極為p+型砷化銦鎵,其鈹元素摻雜其濃度為8 × 1018 /cm3,汲極部分矽元素摻雜濃度為1 × 1018/cm3,i層厚度為150 nm。
藉由濕式蝕刻穿隧式場效電晶體製程研發,以光學曝光製作微米尺寸元件,並改變氧化層材料參數。成功製作出汲極長度LD = 2 μm的元件,氧化鋁/氧化鉿EOT為2 nm,其次臨限擺幅為240 mV/dec,電流開關比達1.52 × 104,汲極導通電流為9.33 μA/μm。
摘要(英) The operation of the tunnel field effect transistors (TFETs) can be carried out with a small operating voltage (0.5 V or less). Advantages of TFETs include excellent switching characteristics, low subthreshold slope (S.S.), and low power consumption. Although Silicon based TFETs have been developed but the power consumption and operation of the bias are high due to large bandgap of Silicon materials. Because Indium based TFETs show a lower effective tunneling barrier height (Ebeff), which results in lower operating bias voltage. Therefore, Indium based TFETs are studied in this thesis.
For a typical p-i-n InGaAs material was used in this study, which is lattice matched to InP substrate., In order to achieve the tunneling operation of n-type TFET, a heavily doped p+-InGaAs is dedicated for source, n+-InGaAs is for drain, and undoped InGaAs is for channel. The tunneling junction for n-type TFET is located at the junction between p+ In0.53Ga0.47As (Be doping of 3.3 × 1019 /cm3) and undoped In0.53Ga0.47As. The channel is a 150 nm undoped In0.53Ga0.47As layer. The drain is a n+ In0.53Ga0.47As (Si doping of 1 × 1018 /cm3).
In this study, a wet etching method was applied to fabricate TFETs by exposing the InGaAs channel layer. Different materials were studied for insulators including SiO2 by PECVD and Al2O3/HfO2 by ALD. The n-TFET with best current and S.S. performance is a device with drain length of 2 μm and insulator of Al2O3/HfO2 (EOT of 2 nm). The characteristics of this device demonstrated the best S.S. of 240 mV/dec, on/off current ratio of 1.52 × 104 and maximum ON current of 9.33 μA/μm .
關鍵字(中) ★ 砷化銦鎵
★ 穿隧式場效電晶體
關鍵字(英) ★ In0.53Ga0.47As
★ tunnel field-effect transistors (TFETs)
論文目次 摘要 i
致謝 i
目錄 ii
圖目錄 iv
表目錄 vi
第一章 導論 1
1.1 穿隧式場效電晶體相關研究發展 1
1.2 研究動機 15
1.3 論文架構 15
第二章 穿隧式場效電晶體介紹 17
2.1 前言 17
2.2 穿隧理論與穿隧電流 17
2.3 江崎二極體(Esaki diode) 19
2.4 穿隧式場效電晶體操作機制 22
2.4.1 N型及P型元件關閉狀態 22
2.4.2 N型及P型元件導通狀態 23
2.5 穿隧式場效電晶體元件特性的重要參數介紹 25
2.6 結論 26
第三章 砷化銦鎵穿隧式場效電晶體製程與特性 27
3.1 前言 27
3.2 砷化銦鎵磊晶結構 27
3.3 穿隧式場效電晶體元件製程流程 27
3.4 單閘極與雙閘極之穿隧式場效電晶體元件量測結果 35
3.4.1 二氧化矽薄膜之單閘極元件特性 35
3.4.2 二氧化矽薄膜之雙閘極元件特性 40
3.4.3 二氧化矽薄膜之單閘極與雙閘極元件特性之比較 44
3.5 高介電係數複合薄膜氧化層之元件特性與分析 48
3.5.1 無化學表面處理之高介電係數複合薄膜氧化層元件特性 48
3.5.2 化學表面處理之高介電係數複合薄膜氧化層穿隧式場效電晶體元件特性 52
3.5.3 不同條件氧化層之雙閘極元件之特性比較 56
3.6 P型穿隧式場效電晶體量測與分析 60
3.7 結論 61
第四章 總結與未來展望 64
參考文獻 66
參考文獻 [1] Committee, I.R., "International Technology Roadmap for Semiconductors, " 2011 Edition. Semiconductor Industry Association.
[2] Iwai, H. "Future of nano CMOS technology." Symposium on Microelectronics Technology and Devices (SBMicro).. IEEE. 2013
[3] Wang, P.-F., et al., "Complementary tunneling transistor for low power application. "Solid-State Electronics, 48(12): p. 2281-2286. 2004.
[4] Mayer, F., et al. " Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance. " in International Electron Devices Meeting,2008.
[5] Mookerjea, S., et al. "Experimental demonstration of 100nm channel length In 0.53 Ga 0.47 As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. " in Electron Devices Meeting (IEDM), 2009
[6] Zhao, H., et al., "Tunneling Field-Effect Transistors With an of 50 and a Subthreshold Swing of 86 mV/dec Using Gate Oxide. " Electron Device Letters, 31(12): p. 1392-1394. 2010.
[7] Bijesh, R., et al. "Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 NearBroken-gap Tunnel FET with ION=740μA/μm,GM=700μS/μm and GigahertzSwitching Performance at VDS=0.5V. "in Electron Devices Meeting (IEDM), 2013
[8] Li, R., et al., "AlGaSb/InAs tunnel field-effect transistor with on-current of 78 at 0.5 V. "Electron Device Letters, 33(3): p. 363-365. 2012.
[9] Dewey, G., et al. "Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing." in Electron Devices Meeting (IEDM), 2011
[10] Yu, T., et al., "In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 Quantum-Well Tunnel-FETs With Tunable Backward Diode Characteristics." Electron Device Letters, 34(12): p. 1503-1505.2013.
[11] Sze, S.M. and K.K. Ng, "Physics of semiconductor devices. "2006: John Wiley & Sons.
[12] 陳俊明, "次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發. "中央大學電機工程學系學位論文, 2013.
[13] 李慶泰, "集極在上氮化鎵/氧化鋅異質接面雙極性電晶體." 中央大學電機工程學系學位論文, 2007.
[14] Remashan, K., et al., "ZnO-based thin film transistors having high refractive index silicon nitride gate. "Applied Physics Letters, 91(18): p. 182101. 2007.
[15] Schlom, D.G. and J.H. Haeni, "A thermodynamic approach to selecting alternative gate dielectrics." MRS bulletin, 27(03): p. 198-204. 2002.
[16] Wilk, G.D., R.M. Wallace, and J. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations." Journal of applied physics, 89(10): p. 5243-5275. 2001.
[17] Milojevic, M., et al.," Interfacial Chemistry of Oxides on III-V Compound Semiconductors, "in Fundamentals of III-V Semiconductor MOSFETs. Springer. p. 131-172. 2010.
[18] Bennett, B.R., et al., "Antimonide-based compound semiconductors for electronic devices: A review". Solid-State Electronics, 49(12): p. 1875-1895. 2005.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2014-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明