博碩士論文 101521019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.127.232
姓名 林柏融(Bo-Rong Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以有機金屬化學蒸氣沉積法成長氮化鋁薄膜及其材料特性研究
(Growth of Aluminum Nitride Epilayers by Metal- Organic Chemical Vapor Deposition)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,以氮化鎵為基礎之藍綠發光二極體已廣泛應用於各種顯示器、背光源、室內照明等,而以氮化鋁鎵為基礎之深紫外光發光二極體也預期能應用於醫療光源、生物檢測或殺菌淨化用途,並期待能取代傳統汞燈。然而為了提升深紫外發光二極體之發光效率,在磊晶上有以下三點困難需要克服:(1) 氮化鋁(AlN)薄膜品質的提升,(2) P型氮化鋁鎵摻雜效率提升,(3) 量子井與能障之間的壓電極化造成波長紅移與效率下降。
本研究利用有機金屬化學蒸氣沉積法成長AlN薄膜於藍寶石基板上,藉由調整中間插入層之厚度,於1180 ℃下成長1 m 厚之AlN薄膜,其AlN (102) X-光繞射搖幌曲線之半高寬為 583 arcsec,將高溫成長層厚度增加至3 m,其半高寬更下降至394 arcsec。在成長高鋁含量之N型與P型氮化鋁鎵於3 m 厚AlN薄膜之研究上也獲得一些成果,其中鋁含量60%之N型氮化鋁鎵成長到1 m 厚度時,其表面粗糙度僅0.63 nm,電子遷移率與載子濃度分別可以達到58 cm2/v-s與1.5×1019 cm-3,其特性已經與N型氮化鎵接近;而鋁含量30%之P型氮化鋁鎵之載子濃度僅達1.2×1016 cm-3,片電阻值高至1.04×105 ohm/sq,此部分仍然有待未來的突破。此研究亦成長氮化鋁鎵(AlGaN/AlGaN)量子井深紫外光發光二極體於氮化鋁薄膜上,並分析其發光特性。從陰極激發光譜可以發現,量子井發光波長為275 nm且半高寬為10 nm,與其他團隊相近,但仍需克服大部分電子容易與VAl-空缺復合,導致量子井發光微弱的問題。
摘要(英) In recent years, GaN-based light-emitting diodes (LEDs) have been widely applied in solid state lighting, displays, backlight and many other areas. AlGaN-based deep ultraviolet (UV) light-emitting diodes are also very promising as an alternative to traditional mercury lamps for applications in medical, bio-instruments and water purification systems. However, there are still several challenges to be overcome, including (1) insufficient AlN material quality, (2) low doping efficiency of p-AlGaN, and (3) large strain between the well and the barrier layers causing a strong piezoelectric field, which results in long emission wavelength and poor emission efficiency.
This work was started with growing high quality aluminum nitride (AlN) epilayer on sapphire substrates by metal-organic chemical vapor deposition. By optimizing the thickness of the intermediate layer, 1 m-thick AlN epilayer grown at 1180 oC exhibited a full-width at half-maximum (FWHM) of the (102) x-ray diffraction rocking curve of 583 arcsec. For a 3 m-thick AlN, its FWHMs was decreased to 394 arcsec. The second part of this work was the growth of high Al-content n-type AlGaN. AlGaN epilayers with AlN mole fraction up to 0.6 were grown and characterization. A 1 m-thick n-type Al0.6Ga0.4N with roughness of 0.63 nm, mobility of 58 cm2/v-s and carrier concentration of 1.5×1019 cm-3 was achieved on a 3 m -thick AlN template. However, there is still much room to improve for p-type Al0.3Ga0.7N. Carrier concentration of 1.2×1016 cm-3 and sheet resistance of 1.04×105 ohm/sq was typically what was achieved on 1 m-thick p-type Al0.3Ga0.7N in this work. AlGaN deep ultraviolet light-emitting diodes on AlN buffer layer were fabricated and analyzed. Cathodoluminescence at 275 nm with FWHM of 10 nm was observed. However, the strong recombination between electrons and VAl- vacancies weakens the luminescence of quantum wells.
關鍵字(中) ★ 氮化鋁
★ 有機金屬化學蒸氣沉積法
★ 深紫外發光二極體
關鍵字(英) ★ AlN
★ MOCVD
★ UVC LED
論文目次 論文摘要 V
Abstract VI
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 論文架構 6
第二章 實驗機台與原理 7
2-1 有機金屬化學蒸氣沉積系統簡介 7
2-2 X光繞射儀簡介 9
2-3 掃瞄式電子顯微鏡簡介 11
2-4 傳輸線模型理論 12
第三章 氮化鋁模板之製備 14
3-1 氮化鋁成長於藍寶石基板之簡介 14
3-2 低溫緩衝層結構 16
3-3 雙溫緩衝層結構 21
第四章 深紫外發光二極體成長於氮化鋁薄膜 31
4-1氮化鋁鎵成長之簡介 31
4-2高鋁含量之N型氮化鋁鎵薄膜之成長 33
4-3 P型氮化鋁鎵薄膜之成長 41
4-4 深紫外發光二極體之材料與光電特性分析 45
4-4-1 電激發及陰極激發頻譜分析 50
第五章 結論 59
參考文獻 61
參考文獻 [1] H. Hirayama, N. Noguchi, S. Fujikawa, J. Norimatsu, N. Kamata, T. Takano, K. Tsubaki, “222-282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template”, Proc. of SPIE, vol. 7216 (2009) pp. 721621.
[2] E. F. Schubert, Light-Emitting Diodes 2nd, Rensselaer Polytechnic Institute, Troy, New York, US, (2006).
[3] M. Kneissl, T. Kolbe, C. Chua, Y. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson and M. W eyers,” Advances in group III-nitride-based deep UV light-emitting diode technology”, Semicond. Sci. Technol. Vol. 26 (2011) pp. 014036.
[4] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi and A. Bandoh, “Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy”, Jpn. J. Appl.Phys., vol. 46 (2007) pp. 1458.
[5] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi and A. Bandoh, “High-Temperature Metal-Organic Vapor Phase Epitaxial Growth of AlN on Sapphire by Multi Transition Growth Mode Method Varying V/III Ratio”, Jpn. J. Appl.Phys., vol. 45 (2006) pp. 8639.
[6] J. Bai, M. Dudley, W. H. Sun, H. M. Wang and M. A. Khan, “Reduction of threading dislocation densities in AlN-sapphire epilayers driven by growth mode modification”, Appl. Phys. Lett., vol. 88 (2006) pp. 051903.
[7] D.G. Zhao, J.J. Zhu, D.S. Jiang, Hui Yang, J.W. Liang, X.Y. Li, H.M. Gong,”Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, J. Cryst. Growth, vol. 289 (2006) pp. 72.
[8] M. Balaji, A. Claudel, V. Fellmann, I. Gélard, E. Blanquet, R. Boichot, S. Coindeau, H. Rousse, D. Pique, K. Baskar,and M. Pons,” Significance of initial stages on the epitaxial growth of AlN using high temperature halide chemical vapor deposition”, Phys. Status Solidi C 9, No. 3–4, (2012) pp. 511 .
[9] L. W. Sang, Z. X. Qin, H. Fang1, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J. Xu and D. P. Yu,” Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomic-layer epitaxial buffer layer”, Appl. Phys. Lett. 93, (2008) pp. 122104 .
[10] D.G. Zhao, D.S. Jiang, L.L. Wu, L.C. Lea, L. Li, P. Chena, Z.S. Liu, J.J. Zhu, H. Wang, S.M. Zhang, H. Yang,” Effect of dual buffer layer structure on the epitaxial growth of AlN on sapphire”, Journal of Alloys and Compounds, 544 (2012) pp. 94
[11] M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi and A. Bandoh, “Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers”, J. Cryst. Growth, vol. 298 (2007) 257.
[12] A. Kakanakova-Georgieva , D. Nilsson, E. Janze´,” High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures”, J. Cryst. Growth, Vol. 338 (2012) pp. 52
[13] Y.Y. Wong, E. Y. Chang, T. H. Yang, J.R. Chang, Y.C. Chen, J.T. Ku, C.T. Lee, C.W. Chang,” The effect of AlN buffer growth parameters on the defect structure of GaN grown on sapphire by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth, Vol. 311 (2009) pp. 1487
[14] Y. Taniyasu, M. Kasu, T. Makimoto,” Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0 0 0 1) substrate”, J. Cryst. Growth, Vol. 298 (2007) pp. 310
[15] H. Hirayama,” Advances of AlGaN-based High-Efficiency Deep-UV LEDs”, Proc. SPIE (2010) pp. 7987
[16] M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J.Yang,M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback,” AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%”, Applied Physics Express 5 (2012) pp. 082101
[17] A.A. Allerman, M.H. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee,D.M. Follstaedt, P.P. Provencio, D.D. Koleske,” Growth and design of deep-UV (240–290 nm) light emitting diodes using AlGaN alloys”, J. Cryst. Growth, Vol. 272 (2004) pp. 227
[18] N. Okada, N. Fujimoto, T. Kitano, G. Narita, M. Imura, K.Balakrishnan, M.Iwaya, S. Kamiyama, H. Amano, I. Akasaki, K. Shimono, T. Noro, T. Takagi and A. Bandoh,” Thermodynamic Aspects of Growth of AlGaN by High-Temperature Metal Organic Vapor Phase Epitaxy”, Japanese Journal of Applied Physics Vol. 45, No. 4A, (2006) pp. 2502.
[19] M. Pophristic, S. P. Guo, and B. Peres, “High-conductivity n-AlGaN with high Al mole fraction grown by metalorganic vapor phase deposition”, Appl. Phys. Lett., vol. 82 (2003) pp. 4289.
[20] K. Zhu, M. L. Nakarmi, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N”, Appl. Phys. Lett., vol. 85 (2004) pp. 20.
[21] M. Shatalov, Z. Gong, M. Gaevski, S. Wu, W. Sun, V. Adivarahan and M. Asif Khan, “Reliability of AlGaN-based deep UV LEDs on sapphire”, Proc. of SPIE Vol. 6134 (2006) pp. 11.
[22]F. Mehnke, T. Wernicke, H. Pingel, C. Kuhn, C. Reich, V. Kueller, A. Knauer, M. Lapeyrade, M. Weyers, and M. Kneissl, “Highly conductive n-Al x Ga1-x N layers with aluminum mole fractions above 80%”, Appl. Phys. Lett., vol. 103 (2013) pp. 212109.
[23] M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, “Correlation between optical and electrical properties of Mg-doped AlN epilayers”, Appl. Phys. Lett., vol. 89 (2006) pp. 152120.
[24] T. Kinoshita, T. Obata, H. Yanagi, and S. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN”, Appl. Phys. Lett., vol. 102 (2013) pp. 012105.
[25] N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang ,” Photoluminescence studies of impurity transitions in AlGaN alloys”, Appl. Phys. Lett., vol. 89 (2006) pp. 092107.
[26] M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang,” Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys”, Appl. Phys. Lett. vol. 94 (2009) pp. 091903.
指導教授 綦振瀛 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明