博碩士論文 101521024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.80.223.123
姓名 沈彥宇(Yen-yu Shen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鍺量子點近紅外線光電晶體之光電特性分析與探討
(Characterization of Germanium Quantum Dots Phototransistor for Near Infrared Photodetection and Amplification)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文專注於鍺量子點光電晶體是否得以應用於近紅外線偵測的量測分析。光電晶體的主要結構特色為以 MOSFET 為基礎結構,在其閘介電層內,埋入 50 nm 鍺量子點於其中。利用選擇性氧化複晶矽鍺柱體來形成 50 nm 鍺量子點/二氧化矽/矽的異質結構,將鍺量子點陣列整合於金氧半場效電晶體中的閘介電層中,與現行之互補式金氧半電晶體技術相容。
量測結果展現出非常低的靜態漏電流值 (~0.27 pA/m2),主要的原因來自於鍺量子點與矽基板有良好的鍺/矽異質界面品質,ION/IOFF比值大於 106,次臨界斜率 (subthreshold slope;SS) 也降至~195 mV/decade。在入射光波長 850 nm、功率 0.9 mW 照射下有明顯的光電流增益,其IOFF & ION 之光/暗電流比在閘極偏壓 (VG) 分別給予 -5 V 及 4 V 時分別達到 6×106 倍與 64 倍,光響應值也分別達到 0.67 A/W 與 2.7 A/W,證明鍺量子點有很好的吸收能力,並結合此高品質鍺量子點/二氧化矽/矽的異質結構是有利於積體電路中光偵測的應用。此外,我們也對元件分別在未照光及照光的條件下進行變溫量測 (300 K—77 K),以降低熱擾動機制,確定光電流的來源機制。隨著環境溫度的降低,元件之光電流值並不隨著溫度而下降,證實元件放光機制的來源主要來自於鍺量子點而不是缺陷所致。同時元件量測的頻率響應於 3-dB 頻寬所量測得到的頻率響應值達 410 MHz。
摘要(英) This thesis focuses on the application of Germanium quantum dots (QDs) phototransistor for the near infrared photodetection and amplification. The main characteristics of the Ge QD phototransistor is based on the framed structure of typical metal-oxide-semiconductor field-effect transistor (MOSFET), incorporating 50 nm Ge QDs embedded in gate dielectrics. The heterostructures of 50 nm Ge QDs/SiO2/Si were formed using the selective oxidation of poly-SiGe pillar, incorporating Ge QDs array into the gate dielectrics of MOSFET, which is a compatible approach with prevailing CMOS technologies.
In the darkness, the Ge QDs phototransistors exhibit low off-state leakage (IOFF ~0.27 pA/μm2), high on-off current ratio (ION/IOFF ~106), and good switching behavior (subthreshold slope = 195 mV/dec), indicating a good hetero-interfacial quality of Ge-on-Si due to a 4-5 nm-thick interfacial SiO2 layer between Ge and Si. Additionally, under 0.9 mW illumination at 850 nm, the Ge QDs phototransistors exhibit significant photo-current-to-dark-current ratio and high photoresponsivity as high as 6×106/0.67 A/W at off-state (VG = -5 V), and 64/2.7 A/W at on-state (VG = 4 V), respectively, indicating the strong absorption of Ge QDs. These results offer a great promise for future Si-based optical interconnection applications. Moreover, the temperature-dependent measurement was conducted from 300 to 77 K at the dark and under illumination in order to identify the mechanisms of photocurrent of Ge QDs phototransistors. As temperature decreasing, the photocurrent is invariant indicating the origin of the photoresponse is related to Ge QDs not the traps. The 3-dB bandwidth of Ge QDs phototransistors is ~410 MHz.
關鍵字(中) ★ 鍺量子點
★ 近紅外線
★ 光電晶體
關鍵字(英)
論文目次 目錄
第一章 研究動機與簡介1
1-1 光電晶體簡介1
1-2 鍺/矽異質結構成長問題3
1-3 鍺量子點應用與研究動機4
1-4 論文章節概要5

第二章 鍺量子點光電晶體操作原理及製作流程回顧10
2-1 前言10
2-2 鍺量子點光電晶體操作原理10
2-2-1 關閉狀態 (OFF-State) 時的光電晶體的光電流機制11
2-2-2 導通狀態 (ON-State) 時的光電晶體的光電流機制12
2-3 鍺量子光電晶體的製作完整流程13

第三章 鍺量子點光電晶體之電性分析與探討26
3-1 前言26
3-2 暗電流電性量測分析26
3-3 光電流電性量測分析28
3-3-1 照光下之汲極電流-閘極電壓 ( ID-VG ) 電氣特性分析28
3-3-2 照光下之汲極電流-汲極電壓 ( ID-VD ) 電氣特性分析29
3-3-3 光電晶體之光響應度及外部量子效應29
3-3-4 照光下之變溫量測分析31
3-3-5光電晶體之波長相依特性分析31
3-3-6光電晶體之頻率響應32

第四章 總結與未來展望43

參考文獻46
參考文獻 參考文獻
[1] Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, 38, 114, (1965).
[2] B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photo
detectors for long wavelength optical communication,” IEEE Journal of Quantum Electronics, 27, 737, (1991).
[3] S. Luryi et al., “New infrared detector on a silicon chip,” IEEE Transactions on Electron Devices, 31, 1135, (1984).
[4] Jifeng Liu et al., “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semiconductor Science and Technology, 27, 094006, (2012).
[5] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, 99, 1151, (1955).
[6] Roosevelt people, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE Journal of Quantum Electronics, 22, 1696, (1986).
[7] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices,” Physical Review Letters, 66, 2903, (1991).
[8] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Physical Review Letters, 64, 1943, (1990).
[9] Yourui Huangfu et al., “Heteroepitaxy of Ge on Si(001) with pits and windows transferred from free-standing porous alumina mask,” Nanotechnology, 24, 185302, (2013).
[10] C. C. Wang et al., “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, 11, 657-660, (2012).
[11] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics,” Appl. Phys. Lett., 83, 4628, (2003).
[12] S. S. Tseng, I. H. Chen, and P. W. Li, “ Photorespones in Poly-Si Phototransistors Incorporating Germanium Quantum Dots in the Gate Dielectrics,” Appl. Phys. Lett., 93, 191112, (2008).
[13] 陳英豪,“閘介電層含鍺量子點複晶矽薄膜電晶體之光響應研究”,碩士論文,國立中央大學,民國98 年。
[14] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107, (2012).
[15] 郭銘浩,““量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製”,碩
士論文,國立中央大學,民國102 年。
[16] Hyo-Soon Kang et al., “Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., 84, 3780, (2004).
[17] Yong-Young Noh et al., “High-photosensitivity p -channel organic phototransistors based on a biphenyl endcapped fused bithiophene oligomer,” Appl. Phys. Lett., 86, 043501, (2005).
[18] Kah-Wee Ang et al., “Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime,”
IEEE Electron Device Letters, 29, 1126, (2008).
[19] Z. Pei, C.S. Liang et al., “High Efficient 850 nm and 1,310 nm Multiple Quantum Well SiGe/Si Heterojunction Phototransistors with 1.25 Plus GHz Bandwidth (850nm),” Int. Electron Devices Meet. 297, (2002).
[20] J.-M. Shieh et al., “Near-infrared silicon quantum dots metal-oxide semiconductor field-effect transistor photodetector,” Applied Physics Letters, 94, 241108-3, (2009).
[21] Tobat P. I. Saragi et al., “Photovoltaic and photoconductivity effect in thin-film phototransistors based on a heterocyclic spiro-type molecule,” Appl. Phys. Lett., 102, 046104, (2007).
[22] V. Foglietti, L. Mariucci et al., “Temperature dependence of the transfer characteristics of polysilicon thin film transistors fabricated by excimer laser crystallization,” Journal of Applied Physics, 85, 616-618, (1999).
[23] Zhe Qi et al., “High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide,” Applied Physics Letters, 103, 053301, (2013).
[24] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.: New York, Wiley Interscience, (1981).
[25] Ali K. Okyay et al., “Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch,” IEEE Transactions On Electron Devices, 54, 3253, (2007).
指導教授 李佩雯(Pei-wen Li) 審核日期 2014-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明