博碩士論文 101521031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.220.231.235
姓名 李池昱(Chi-Yu Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
(Design and Analysis of InP Photodiode with , High speed , High-Efficiency, and Large Active Diameter for the Application of >25Gbit/sec Optical Interconnect at 850nm Optical Wavelength)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們已經成功作出了新型以磷化銦為基材光檢測器的詳細特性與分析。這個元件可維持穩定的外部量子效應(~74%,無抗反射層 )且操作波長在0.85μm到1.55μm下可以清楚地發現資料傳輸高達40 Gbit/sec且清楚的看到眼圖(無誤碼)。此外,和以砷化鎵為基材的光檢測器相比, 以相同速度操作在850nm波段下, 由於P型In0.53Ga0.47As作為吸收層的電洞傳輸會被消除以及極佳的電子傳輸特性,,我們能以較大的主動區直徑來達到相同的元件速度。 藉由不同主動直徑的光檢測器的量測和模擬結果明確指出,在In0.53Ga0.47As空乏層,因為輕微的電子谷間散射導致操作在1.55μm的電子飄移速度會比在0.85μm的時候要來得快(1.9 vs. 1.5×105 m/sec) 。 然而,操作在長波段有電洞傳輸慢的現象,會造成載子傳輸時間隨光電流的增加而衰減。 分別操作在短波長和長波長下,我們藉由多模光纖和單模光纖以40μm的主動區直徑達到 40Gbit/sec的無誤碼傳輸。
摘要(英) The detail characterizations and analysis of novel high-speed InP based photodiodes have been performed. Such device can sustain an invariable high external efficiency (~74 %; without anti-reflection coating) and have clear eye-openings at around 40 Gbit/s operation across a wide optical operation window (0.85μm to 1.55μm). Furthermore, as compared to that of GaAs based PDs for the same desired speed performance at 850 nm optical wavelength, it can have an enlarged device active diameter due to the elimination of hole transport and excellent electron transport characteristic in the In0.53Ga0.47As based collector layer. The measurement and modeling results of PDs with different active diameters clearly indicate that compared with short-wavelength (0.85μm) operation, the electron drift-velocity in the depleted In0.53Ga0.47As layer is faster (1.9 vs. 1.5×105 m/sec) under long wavelength (1.55μm) excitation, which can be attributed to less significant electron inter-valley scattering effect. Nevertheless, due to existence of slow hole transportation at long-wavelength operation, our PD shows more significant degradation in transient time limited bandwidth when the output photocurrent increases. By using such device with diameter of optical window as large as 40μm, 40 Gbit/sec error-free transmissions have been successfully demonstrated through single-mode and multi-mode fibers at long- and short-wavelengths operations, respectively.
關鍵字(中) ★ pin光檢測器 關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 viii
第一章 序論 1
1-1 多媒體時代 1
1-2 光連結應用 1
1-3 同質接面之磷化銦光偵測器原理 11
1-4 設計大主動區直徑的同質接面之磷化銦光偵測器 18
1-5 論文動機 22
第二章 高速光偵測器的設計原理及製作 25
2-1 元件磊晶結構設計 25
2-2 高速光偵測器之模擬與分析 26
2-3 元件製作步驟 31
第三章 實驗與量測分析 42
3-1實驗系統架設 42
3-2量測結果與數據分析 46
第四章 結論與未來展望 59
參考文獻 60
參考文獻 [1] C. L. Schow, F. E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, R. Horton, J.
Knickerbocker, and J. Kash “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008., pp. OMK5, San Diego, CA, Feb.,2008.
[2] N. Savage, “Linking with Light,” IEEE Spectrum., vol. 39, no. 8, Aug. 2002.
[3] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons., 2nd Edition.
[4] D.-A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition.
[5] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, no.4, pp. 709–727, Jul.,Aug., 2004.
[6] J.-W. Shi, F.-M. Kuo, Chan-Shan Yang, S.-S. Lo, and Ci-Ling Pan, “Dynamic Analysis of Cascade Laser Power Converters for Simultaneous High-Speed Data Detection and Optical-to-Electrical dc Power Generation,” IEEE Trans.. on Electron Device. vol. 58, no.7, pp. 2049-2056, July., 2011.
[7] X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams,“A comparison of front and backside-illuminated high-saturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec.,vol. 40,no. 9, pp. 1321 – 1325, Sept., 2004.
[8] M. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” IEEE/OSA Journal of Lightwave Technology., vol. 30, no. 4, pp. 448-458, Feb.,2012.
[9] D. Bimberg, “Green Data and Computer Communication,” IEEE Photonic Society Meeting 2011., pp. 308-309, Arlington, VA, USA, Oct.,2011.
[10] K. Kurata, “High-Speed Optical Transceiver and Systems for Optical Interconnects,” Proc. OFC 2010., pp. OThS3. San Diego, CA, USA, March.,2010.
[11] C.-X. Jiaxi, S.-H.Huang, L.Wang, N.-Y. Li, C.-C. Chen, S.Inano, “850m, VCSEL and PD for Ultra High Speed Data Communication over Multimode Fiber. Proc. OFC 2013., no.77, Oct., 2013.
[12] N. Dupuis, D. Kuchta, F.-E. Doany, A. Rylykov, J. Prosel, C.-W. Baks and C.-L. Schow, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links.” Proc. OFC 2014., pp. M3G.5, San Francisco, California United States, March..,2014.
[13] W.-K. ayashi, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “40-Gbps Direct Modulation of 1.3-m InGaAlAs DFB Laser in Compact To-CAN Package,” Proc. OFC 2011., pp. OWD2, Los Angele, CA, USA, March.,2011.
[14] E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nature Photonics, vol. 3, no.5, pp. 27-29, Jan., 2009.

[15] Y. Lee, D. Kawamura, T. Takai, K. Kogo, K. Adachi, T. Sugawara, N. Chujo, Y. Matsuoka, S. Hamamura, K. Yamazaki, Y. Ishigami, T. Takemoto, F. Yuki, H. Yamashita, and S. Tsuji, “25-Gb/s 100-m MMF Transmission Using a Prototype 1.3-m-Range CMOS-Based Transceiver for Optical Interconnections,” IEEE Photon. Technol. Lett., vol. 24,no.6, pp. 467-469, March.,2012.
[16] A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. De Dobbelaere, “A CMOS photonics platform for High-Speed Optical Interconnects,” IEEE Photonic Society Meeting 2012., pp. 356 – 357, San Francisco, CA, USA, Sep.,2012.
[17] Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, and C. L. Ho, “10-Gbps InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response,” IEEE Photon. Technol. Lett., vol. 19, no.5,pp. 339-341, May.,2007.
[18] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, no.10 pp.2326-2328, Oct.,2004.
[19] J.-W. hi and C.-W. Liu, "Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors " IEEE/OSA Journal of Lightwave Technology, vol. 22, no. 6, pp.1583-1590, June.,2004.
[20] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, no.7 pp. 1265-1281, Jul.,1999.
[21] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996.
[22] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, no.8, pp. 938-940, April.,2006.
[23] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, no.7, pp. 533-535, April.,2012.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2014-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明