博碩士論文 101521032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.117.154.41
姓名 簡菁儀(Ching-I Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
(Implementation on Wideband Low Power CMOS Low Noise Amplifier for K-Band RF Receiver Front-end)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要在探討K頻段寬頻、低雜訊之低雜訊放大器設計方法,文中提出了三個實現寬頻、低功耗特性的電路設計。電路採用tsmc 0.18-μm CMOS及tsmc 90-nm CMOS兩種製程。
第一個電路設計為一個三級共源極串聯之寬頻低功耗低雜訊放大器,欲設計ㄧ個寬頻之低雜訊放大器,本電路將三級電晶體增益分別匹配在不同的中心頻率下,預期其整體頻寬能到寬頻設計,由於此電路操作於高頻頻率,電晶體內部寄生效應轉趨明顯,因此電路中使用多個共振電路消除寄生效應,進而達到提升增益、降低雜訊之效果;本電路使用tsmc 0.18-μm CMOS製程設計,電路量測結果在24.3 GHz有最大增益7.78 dB,其3-dB頻寬從18 - 28.6 GHz (共10.6 GHz),量測最小雜訊為5.3 dB,線性度量測結果P1dB為-10 dBm、IIP3為-1 dBm,總功率消耗為7.07 mW,實際晶片大小(含下針測試pads)為0.89 × 0.83 mm2。
第二個低雜訊放大器電路為共源極串聯疊接架構,此電路設計重點為將第二級電路使用疊接架構,優點在於疊接架構可提供比共源極電路更大的增益,且由於電路架構關係,增加電路之隔離度,由於高頻電容寄生效應會造成雜訊增加,因此在疊接架構兩顆電晶體間串連一電感來降低雜訊。此電路量測最大增益為8.6 dB,其3-dB頻寬從19.4 - 27.8 GHz(共8.4 GHz),量測最小雜訊為6.8 dB。線性度量測結果P1dB為-10.5 dBm、IIP3為1.5 dB,總消耗功率為10.5 mW,晶片大小為0.89 × 0.83 mm2。
最後一個電路為使用tsmc 90-nm CMOS製程設計之變壓器回授既電流再生之寬頻低功耗低雜訊放大器,本次電路為單級疊接架構,將輸入匹配使用一變壓器回授,其優點在於可提升電路增益,為了使得電路操作在低功耗條件下,將電流再生技術加入疊接架構中,達到提高增益、降低功耗之效果。此電路量測結果在23 GHz有11.4 dB的增益,其3-dB頻寬從17.2 - 30 GHz(共12.8 GHz),量測雜訊最小為3.65 dB,而在頻寬內雜訊變化為3.65 - 4.18 dB。線性度量測結果P1dB為-17.5 dBm、IIP3為-6.1 dBm,電路總消耗功率為6.11 mW,晶片面積為0.95 × 0.6 mm2。
摘要(英) The primary target of this thesis is to design wideband and low power K-band low noise amplifier (LNA). There are three different circuit designs which are design in tsmc 0.18-μm CMOS and tsmc 90-nm CMOS processes.
The first LNA circuit is a wideband, low power LNA using three stages common-source topology. In order to obtain a wideband response, the stagger tuning technique is utilized. At high frequencies, since the parasitic capacitances degrade the gain and contribute considerable noise, series-peaking inductors are used to resonate the parasitic capacitances. The proposed LNA achieved a measured maximum gain of 7.78 dB at 24.3 GHz. The 3-dB bandwidth is 10.6 GHz from 18 - 28.6 GHz. The minimum noise figure is 5.3 dB. The input 1-dB gain compression point (P1dB) is -10 dBm, and the third-order intercept point (IIP3) is -1 dBm. Total power consumption is 7.07 mW, and the chip size including testing pads is 0.89 × 0.83 mm2.
The second circuit is a two-stage wideband low noise amplifier. The first stage of the LNA adopted common-source topology with inductive source-degeneration to achieve both impedance and noise matching simultaneously. Meanwhile, the second stage used cascode topology. This topology can mitigate the Miller effects and improves the isolation between input/output ports. However, at high frequency, the parasitic capacitances in cascode topology also degrade the gain and contribute considerable noise. Accordingly, a series inductor is utilized to resonate the effect of the parasitic capacitance. Based on this design consideration, the LNA shows a gain of 8.6 dB with 10.5 mW power consumption, and a minimum noise figure of 6.8 dB. The P1dB is -10.5 dBm, and the IIP3 is 1.5 dBm. Total chip size including pads is 0.89 × 0.83 mm2.
The final LNA circuit is a wideband, low power low noise amplifier with transformer feedback input matching and the current-reused topology in 90-nm CMOS process. The current-reused technique is employed to reduce the power consumption. The input matching adopts a gate-source feedback transformer to achieve impedance and noise matching. The proposed LNA achieves a gain of 11.4 dB over a 3-dB bandwidth from 17 to 30 GHz and a minimum noise figure of 3.65 dB. The measured P1dB is -17.5 dBm and the IIP3 is -6.1 dBm at 24 GHz. The LNA consume only 6.11 mW from a 1.3-V supply. The chip size is 0.95 × 0.6 mm2.
關鍵字(中) ★ 低雜訊放大器
★ K頻段
★ 寬頻
★ 低功耗
關鍵字(英) ★ low noise amplifier
★ K-band
★ wideband
★ low power
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 研究動機 1
1-2 K頻段發展與研究現況 2
1-3 章節介紹 4
第二章 低雜訊放大器 5
2-1 低雜訊放大器介紹 5
2-2 低雜訊放大器重要參數 6
2-2-1 S參數(S-Parameters) 6
2-2-2 雜訊指數 6
2-2-3 穩定度 7
2-2-4 功率消耗 7
2-2-5 線性度 8
2-3 雜訊探討 9
2-3-1 雜訊種類 9
2-3-2 雜訊電路分析與計算 12
2-3-3 低雜訊放大器架構簡介 14
第三章 使用0.18-μm CMOS 設計之低雜訊放大器 15
3-1 三級共源極串聯之低電路架構 15
3-1-1 電路模擬與量測結果 22
3-1-2 結果與討論 31
3-2 共源極串聯疊接架構之低雜訊放大器 34
3-2-1 電路架構 34
3-2-2 電路模擬與量測結果 38
3-2-3 結果與討論 44
第四章 使用90−nm CMOS設計之低雜訊放大器 48
4-1 電路架構 48
4-1-1 變壓器回授電路分析 50
4-2 電路模擬與量測結果 56
4-3 結果與討論 61
第五章 結論 63
5-1 結論 63
5-2 未來方向 64
參考文獻 65
參考文獻 [1]D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[2]K.-W. Yu, Y.-L. Lu, D. Huang, D.-C. Chang, V. Liang, and M.-F. Chang, "24 GHz low-noise amplifier in 0.18μm CMOS technology," Electronics Letters, vol. 39, no. 22, pp. 1559-1560, Oct. 2003.
[3]S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology," IEEE Microw. and Wireless Compo. Lett., vol. 15, no. 7, pp. 448-450, July 2005.
[4]W.-C. Wang, Z.-D. Huang, G. Carchon, A. Mercha, S. Decoutere, W. D. Raedt, and C.-Y. Wu, "A 1 V 23 GHz low-noise amplifier in 45 nm planar Bulk-CMOS technology with high-Q above-IC inductors," IEEE Microw. and Wireless Compo. Lett., vol. 19, no. 5, pp. 326-328, May 2009.
[5]Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, "A low-power low-noise amplifier for K-Band applications," IEEE Microw. and Wireless Compo. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[6]C.-C. Kuo and H. Wang, "A 24-GHz low power low noise amplifier using current reuse and body forward bias techniques in 0.18μm CMOS technology," in Prof. 2010 Asia-Pacific Microw. Conf., Dec. 2010, pp. 1509-1512.
[7]A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, "A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology," in IEEE Radio Freq. Integr. Circuits Symp., June-April 2008, pp. 373-376.
[8]B. Seo and S. Jeon, "An 18-32 GHz ultra wideband low-noise amplifier with a low variation of group delay," in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[9]C.-H. Wang, Y.-T. Chiu, and Y.-S. Lin, "3.1 dB NF 20-29 GHz CMOS UWB LNA using a T-match input network," Electronics Lett., vol. 46, no. 19, pp. 1312-1313, Sept. 2010.
[10]G. D. Nguyen, Y. Chiu, and M. Feng, "24-GHz low noise amplifier using coplanar waveguide series feedback in 130-nm CMOS," in Prof. 2009 Asia-Pacific Microw. Conf., Dec. 2009, pp. 1148-1151.
[11]H.-Y. Yang, Y.-S. Lin, and C.-C. Chen, "0.18 μm 21-27 GHz CMOS UWB LNA with 9.3 +-1.3 dB gain and 103.9 +-8.1 ps group delay," Electronics Lett., vol. 44, no. 17, pp. 1014-1016, Aug. 2008.
[12]M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, "A millimeter-wave (23-32 GHz) wideband BiCMOS low-noise amplifier," IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 289-299, Feb. 2010.
[13]M. N. O. S. C. K. Alexander, and C. Y. Chen, Fundamentals of Electric Circuits, McGraw-Hill, 2007.
[14]A. A. Abidi, "High-frequency noise measurements on FETs with small dimensions," IEEE Trans. Electron Devices, vol. 33, no. 11, pp. pp. 155-158, Nov. 1986.
[15]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice-Hall, 1998.
[16]H. Samavati, H. R. Rategh, and T. H. Lee, "A 5-GHz CMOS wireless LAN receiver front end," IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[17]H.-T. Chou, Z.-L. Ke, and H.-K. Chiou, "A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology," in Prof. 2012 Asia-Pacific Microw. Conf., Dec. 2012, pp. 750-752.
[18]I. Aoki, S.-D. Kee, D.-B. Rutledge, and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory & Techn., vol. 50, no. 1, pp. 316-331, Jan 2002.
[19]H.-W. Chiu, S.-S. Lu, and Y.-S. Lin, "A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption," IEEE Trans. Microw. Theory & Techn., vol. 53, no. 3, pp. 813-824, March 2005.
[20]B.-J. Huang, K.-Y. Lin, and H. Wang, "Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology," IEEE Trans. Microw. Theory & Techn., vol. 57, no. 12, pp. 3049-3059, Nov. 2009.
[21]B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[22]R. Ludwig and G. Bogdanov, RF Circuit Design: Theory & Applications, 2nd ed., Prentice Hall, 2008.
[23]梁可駿, "以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製," 碩士論文, 電機工程學系, 國立中央大學, 民國 96年.
[24]陳欣瑋, "應用於 UWB/V 頻段寬頻 CMOS 低雜訊放大器之研究," 碩士論文, 電機工程學系, 國立中央大學, 民國 101年.
[25]邱怡菁, "應用於 K/V 頻段之低功耗 CMOS 低雜訊放大器之研究," 碩士論文, 電機工程學系, 國立中央大學, 民國 102 年.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2014-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明