博碩士論文 101521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:13.58.190.161
姓名 張益維(Yi-Wei Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波毫米波寬頻低本地振盪驅動功率達靈頓混波器及自振混波器之研製
(Design of Microwave and Millimeter-wave Broadband Low Local Oscillation Driving Power Darlington Mixers and Self-oscillating Mixer)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究使用達靈頓對實現微波及毫米波寬頻混波器,並可應用於無線通訊射頻接收機。論文中以寬頻混合達靈頓架構為基礎延伸出三種不同架構的寬頻混波器,分別為單端式達靈頓寬頻混波器、達靈頓寬頻分佈式混波器和達靈頓寬頻雙平衡式混波器。論文最後一部份為結合振盪器之升頻混波器研製。
  單端式混波器使用砷化鎵0.25 μm假晶格高速電子遷移率電晶體(pHEMT)製程技術完成。電路設計使用達靈頓對可進一步降低本地振盪功率,達到寬頻及轉換增益的特性。所提出電路利用方向耦合器來耦合射頻訊號和本地振盪訊號,射頻頻寬從10到40 GHz,本地振盪驅動功率只需-5 dBm,最大的轉換增益為13.2 dB,擁有好的性能指標為3.22 GHz/mW。
  達靈頓寬頻分佈式混波器使用0.18 μm SiGe BiCMOS製程完成,所提出的架構是利用混合結構NMOS-HBT(異質接面雙極性電晶體)達靈頓對實現分佈式閘極驅動混波器的增益單元裡,比起汲級驅動分佈式混波器,有效地降低本地振盪驅動功,同時具有高轉換增益。所提出電路利用二階Wilkinson功率合併器來耦合射頻訊號和本地振盪訊號,射頻頻寬可從2到67 GHz,其本地振盪驅動功率為0 dBm,最大的轉換增益5 dB,並擁有最佳的性能指標4.96及較小的晶片面積0.41 mm2。
  達靈頓寬頻雙平衡式混波器是將達靈頓對、功率分配器及馬遜(Marchand)平衡非平衡轉換器應用到電路設計上,其射頻頻寬從30到67 GHz,本地振盪驅動功率為2 dBm及最大的轉換增益-5 dB,並且保有雙平衡式混波器的特性,良好的雜散訊號響應抑制量為40 dBc及埠對埠訊號隔離度大於30 dB。
  自振式升頻混波器利用2 μm砷化鎵異質接面雙極性電晶體(HBT)及0.5 μm高速電子遷移率電晶體(HEMT)製程技術完成,論文主要探討混波器與壓控振盪器的結合,模擬分析四種組態的自振式混波器。由分析結果得知,異質接面雙極性電晶體-高速電子遷移率電晶體吉伯爾混波器擁有最寬的頻寬、最佳的增益頻寬乘積和較佳的相位雜訊。量測振盪頻寬範圍從19.51至21.17 GHz,在中心頻率20.34 GHz下,距偏移中心頻率1 MHz量測之輸出相位雜訊為-123 dBc/Hz。當自振式混波器操作為升頻器時,量測的上旁波帶轉換增益為-16 dB,輸入的1 dB增益壓縮點為-7 dBm。
  最後,總結本篇論文所提出的電路設計與未來可改善的研究方向。
摘要(英) Several microwave and millimeter broadband mixers using Darlington cell are presented in this thesis for the receiver in wireless communication. Based on the broadband Darlington cell, three circuit topologies, including a broadband single-ended mixer, a broadband distributed mixer, and a broadband double-balanced mixer are proposed. A self-oscillation mixer (SOM) using a hybrid cascode topology is also proposed.
  The broadband single-ended mixer is realized in 0.25 m GaAs enhancement/depletion-mode (E/D-mode) pseudomorphic high-electron mobility transistor (pHEMT) process. To achieve low local oscillation (LO) driving power, a Darlington cell and a directional coupler are adopted. The proposed mixer features with 3-dB bandwidth from 10 to 40 GHz, a low LO driving power of -5 dBm, a maximum conversion gain of 13.2 dB. The proposed mixer features with low LO driving power and conversion gain as compared to the bulk-driven mixer.
  The broadband distributed mixer using Darlington cell is implemented using a 0.18 m SiGe BiCMOS technology. To extend the operation bandwidth, a uniform distributed topology is utilized for wideband matching. The LO driving power is further reduced as compared to the distributed drain mixer. The proposed mixer consists of a Darlington cell and a two-section Wilkinson power combiner. This mixer exhibits a broad RF bandwidth from 2 to 67 GHz, a low LO driving power of 0 dBm, a maximum conversion gain of 5 dB, and a small chip size of 0.41 mm2.
  The broadband double-balanced mixer employed Darlington cell is implemented using a 0.18 m SiGe BiCMOS process. A compact Marchand balun and a Wilkinson power divider are used to generate the differential RF and LO signals for the gate-pumped mixer. Meanwhile, the high port-to-port isolations are achieved. The proposed double-balanced mixer achieves a broad RF bandwidth from 30 to 67 GHz, a low LO driving power of 2 dBm, and a conversion gain of -5 dB. Morever, the spurious suppression is better than -40 dBc due to the double-balanced topology.
  The self-oscillation mixer using a GaAs 2 μm heterojunction bipolar transistor (HBT) and 0.5 μm high electron mobility transistor (HEMT) process. The HBT-HEMT cascode mixer is similar to a dual-gate mixer. The voltage-controlled oscillator (VCO) and the transconductance stage are investigated using four transistor combinations to enhance the conversion gain, bandwidth and phase noise. Among four configurations, the HBT-HEMT cascode mixer exhibits the best gain-bandwidth product, the widest bandwidth and the lower phase noise. The measured tuning range of VCO is from 19.51 to 21.17 GHz. The measured phase noise at 1-MHz offset is -123 dBc/Hz at 20.34 GHz. The measured conversion loss is 16 dB with an input 1-dB compression point of -7 dBm, as the self-oscillation mixer is performed as an up converter.
  Finally, the conclusions and future works are addressed in Chapter 7.
關鍵字(中) ★ 達靈頓
★ 寬頻混波器
★ 自振式混波器
★ 微波及毫米波
★ 低本地振盪驅動功率
★ 互補式金屬氧化物半導體
關鍵字(英) ★ Darlington
★ broadband mixer
★ self-oscillating mixer
★ microwave and millimeter-wave(MMW)
★ low local oscillation driving power
★ CMOS
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIV
第一章、緒論 1
1.1 研究動機 1
1.2 相關研究與發展 2
1.3 論文貢獻 4
1.4 論文架構 5
第二章、混波器設計原理 6
2.1 混波器簡介與原理 6
2.2 混波器重要參數介紹 8
2.3 混波器分類 14
第三章、單端式寬頻混波器 17
3.1 簡介 17
3.1.1 製程簡介 18
3.2 電路設計與分析 19
3.2.1 達靈頓架構探討 19
3.2.2 方向耦合器(Directional Coupler)探討 27
3.2.3 主動式負載(Active Load)探討 29
3.2.4 達靈頓寬頻混波器 31
3.3 電路模擬與量測 34
3.3.1 模擬與量測結果討論 34
3.3.2 電路除錯分析 44
3.4 總結 48
第四章、達靈頓寬頻分佈式混波器 51
4.1 簡介 51
4.1.1 製程簡介 52
4.2 電路設計與分析 53
4.2.1 分佈式架構 53
4.2.2 達靈頓架構 56
4.2.3 寬頻Wilkinson功率合併器(Wilkinson power combiner) 63
4.3電路模擬與量測 69
4.3.1非線性穩定度分析 69
4.3.2模擬與量測結果 79
4.4 總結 93
第五章、達靈頓寬頻雙平衡式混波器 96
5.1 簡介 96
5.2 電路設計與分析 97
5.3 電路模擬與量測 108
5.3.1 模擬與量測結果討論 108
5.3.2 電路除錯分析 119
5.4 總結 125
第六章、自振式升頻混波器 127
6.1 簡介 127
6.1.1 振盪器原理介紹 128
6.1.2 振盪器重要參數介紹 129
6.1.3 製程簡介 133
6.2 電路設計與分析 134
6.3 電路模擬與量測 148
6.3.1壓控振盪器量測 150
6.3.2 自振式升頻混波器模擬量測結果 156
6.4 總結 165
第七章、結論 166
參考文獻 169
參考文獻 [1] P.-W. Hooijmans, “RF front end application and technology Trends,” Design Automation Conf., pp. 73–78, June 2003.
[2] S.-T. Wu, “RF mixer design and characterization,” Master. Thesis, Elect. Eng., National Tsing Hua University, Taiwan, 2004.
[3] V. Liberali, and G. Trucco, “CMOS analog design for wireless communication,” in Proc. of Intl. Conf. on Microelectronics, 2004.
[4] C.-H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in Asia–Pacific Microw. Conf., Nov. 2006, pp. 195–198.
[5] F.-C. Chang, P.-C. Huang, S.-F. Chao, and H. Wang, “A low power folded mixer for UWB system applications in 0.18-μm CMOS technology,” IEEE Microw. Compon. Lett., vol. 17, no. 5, pp.367–369, May 2007.
[6] L. Liu and Z. Wang, “Analysis and design of a low-voltage RF CMOS mixer,” IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 212–216, Mar. 2006.
[7] I. Kallfass, H. Massler, A. Leuther, A. Tessmann, and M. Schlechtweg “A 210 GHz dual-gate FET mixer MMIC with >2 dB conversion gain high LO-to-RF isolation and low LO-drive requirements,” IEEE Microw. Compon. Lett., vol. 18, no. 8, pp. 557–559, Aug. 2008.
[8] J. Kim, M.-S. Jeon, D. Kim, J. Jeong, and Y. Kwon, “High-performance V-band cascode HEMT mixer and downconverter module,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 3, pp. 805–810, Mar. 2003.
[9] K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microw. Compon. Lett., vol. 17, no. 7, pp. 531–533, Jul. 2007.
[10] C.-H. Kuo, B.-H. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “A 10-35 GHz low power bulk-driven mixer using 0.13μm CMOS process,” IEEE Microw. Compon. Lett., Vol. 18, No. 7, pp. 455–457, Jun. 2008.
[11] C.-C. Huang, G.-C. Guu, C.-K. Chen, and C.-W. Huang, “A resistive double-balance mixer using bulk-driven method with low pumping power in 0.18 μm CMOS technology,” in Asia-Pacific Microw. Conf., Nov. 2013, pp. 5-8.
[12] C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 um CMOS technology,” IEEE Microw. Compon. Lett., vol. 19, no.8, pp. 521–523, Aug. 2009.
[13] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 670–678, Mar. 2012.
[14] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453 μW 53–70 GHz ultra low power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903–1912, May 2013.
[15] H.–K. Chiou, and H.-T Chou, “An ultra-low power V-Band source-driven down-conversion mixer with low-loss and broadband asymmetrical broadside-coupled balun in 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp.2620–2631, July. 2013.
[16] H.-Y. Yang, J.-H. Tsai, C.-H. Wang, C.-S Lin, W.-H. Lin, K.-Y. Lin, T.-W. Huang, and H. Wang, “Design and analysis of a 0.8-77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 3, pp. 562–572, Mar. 2009.
[17] K.-L. Deng, and H. Wang, “A 3-33 GHz PHEMT MMIC distributed drain mixer,” in Proc. Radio Freq. Integr. Circuits Symp. Dig., May. 2002, pp. 151–154.
[18] F. Ellinger, L.-C. Rodoni, G. Sialm, C. Kromer, G.-V. Buren, M.-L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1382–1391, May. 2004.
[19] Y.-S. Lin, C.-L. Lu, Y.-H. Wang, “A 5 to 45 GHz distributed Mixer with cascode complementary switching pairs,” IEEE Microw. Compon. Lett., vol. 23, no. 9, pp. 495–497, Sep. 2013.
[20] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30-50 GHz wide modulation bandwidth bidirectional BPSK demodulator / modulator with low LO power,” IEEE Microw. Compon. Lett., vol. 19, no. 5, pp. 332–334, May. 2009.
[21] T.-Y. Yang, “Microwave / Millimeter-wave broadband and low-loss CMOS balun design and applications,” Ph.D. dissertation, Elect. Eng., National Central University, Taiwan, 2008.
[22] S. Hackl, J. Beck, M. Wurzer, and A.L. Scholta, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1241–1244, May.2002.
[23] A. Khy and B. Huyart, “A 35–45 GHz low power direct-conversion Gilbert-cell mixer in 0.13μm GaAs PHEMT,” in Proc. 40th Eur. Solid-State Circuits Conf., Sep. 2010, pp.1058−1061.
[24] J.-H. Tsai, and C.-C. Wang “A 25-55 GHz CMOS sub-harmonic direct-conversion mixer for BPSK demodulator,” in Asia-Pacific Microw. Conf., Dec. 2008, pp. 1−4.
[25] C.-S. Lin, H.-Y. Chang, P.-S. Wu, K.-Y. Lin, and H. Wang, “A 35-50 GHz IQ-demodulator in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1397–1400.
[26] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1350–1360, May. 2011.
[27] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J.-G.-J. Chern, W.-C. Huang, and H. Wang, “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Compon Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[28] F. Zhang, E. Skafidas, and W. Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2007, pp. 141–144.
[29] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, and H. Wang, “A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008.
[30] C.-S. Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-µm CMOS Technology,” IEEE Microw. Compon. Lett., vol. 16, no. 5, pp.293-295 May. 2006.
[31] M. Kraemer, M. Ercoli, D. Dragomirescu, and R. Plana, “A wideband single-balanced down-mixer for the 60 GHz band in 65 nm CMOS,” in Asia-Pacific Microw. Conf., Aug. 2012. pp. 1849–1852.
[32] D.-H. Kim and J.-S. Rieh, “A single-balanced 60-GHz down-conversion mixer in 0.13-μm CMOS technology for WPAN applications,” in 34th International Conference Infrared, Millimeter, and Terahertz Waves. Sept. 2009, pp. 1–2.
[33] Y.-A. Lai, C.-N. Chen, S.-H. Hung, and Y.-H. Wang, “Compact double-balanced star mixers with novel dual 180° hybrids,” In 11th International Conference Solid-State and Integr. Circuits Tech., (ICSICT) Nov. 2012, pp. 1–4.
[34] J.-L. Bohorquez, A.-P. Chandrakasan, and J.-L. Dawson, “A 350 µW CMOS MSK transmitter and 400 µW OOK super-regenerative receiver for medical implant communications,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1248–1259, Apr. 2009.
[35] A.-C. Heiberg, T.-W. Brown, T.-S. Fiez, and K. Mayaram, “A 250 mV, 352 µW GPS receiver RF front-end in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 938–949, Apr. 2011.
[36] B. R. Jackson, and C. E. Saavedra, “A dual-band self-oscillating mixer for C-band and X-band applications,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 2, pp. 318–323, Feb. 2010.
[37] M. J. Roberts, S. Iezekiel, and C. M. Snowden, “A W-band self-oscillating subharmonic MMIC mixer,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2104–2108, Dec. 1998.
[38] C.-H. Wu, and N.-Y. Wu, “Design of low power up-conversion self-oscillating mixer,” in Proc. China-Japan Joint Microw. Conference, (CJMW) pp. 1–4, Apr. 2011.
[39] J. Ghahramani, M. Rahnama, S. Rezakhani, M. Soleimani Farrokh, and A.-M. Kordalivand, “Design and simulation of 5 GHz up-conversion self-oscillating mixer,” IEEE System Engineering and Technology, Jun. 2011, pp. 96–99.
[40] C.-H. Wu, and G.-X. Jian, “Design of up conversion mixer with enhanced transconductance stage and low power consumption oscillator,” in Proc. International Conf. on Signals and Electronic Systems, pp. 229–232, Sep. 2010.
[41] K. W. Kobayashi, A. K. Oki, D. K. Umemoto, T. R. Block, and D. C. Streit, “A novel self-oscillating HEMT–HBT cascode VCO-mixer using an active tunable inductor,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 1231–1240, Jun. 1998.
[42] J.-Y. Kim; W.-Y. Choi, “30 GHz CMOS self-oscillating mixer for self-heterodyne receiver application,” IEEE Microw. Compon. Lett., vol. 20, no. 6, pp. 334–336, June. 2010.
[43] F. Starzer, P.-H. Forstner, L. Maurer, and A. Stelzer, “A 21-GHz self-oscillating down-converter mixer,” 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF systems (SiRF), Jan. 2012, pp. 93–96.
[44] T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H. Wang, “A low-power oscillator mixer in 0.18-um CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 88–95, Jan. 2006.
[45] Stanley S. K. Ho, and Carlos E. Saavedra, “A CMOS broadband low-noise mixer with noise cancellation,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1126–1132, May. 2010.
[46] Ahmed Amer, Emad Hegazi, and Hani F. Ragaie, “A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323–328, Feb. 2007.
[47] A. Liscidini, A. Mazzanti, R. Tonietto, L. Vandi, P. Andreani, and R. Castello, “Single-stage low-power quadrature RF receiver front-end: The LMV cell,” IEEE J. Solid-State Circuits, vol. 41, pp. 2832–2841, Dec. 2006.
[48] M. Camponeschi, A. Bevilacqua, and P. Andreani, “Analysis and design of a low-power single-stage CMOS wireless receiver,” Norchip, 2009.
[49] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2011.
[50] K.L. Fong, and R. Meyer, “Monolithic RF Active Mixer Design,” IEEE Trans. on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing, vol.46, pp. 231–239, Mar. 1999.
[51] WIN Semiconductors, “0.25 μm InGaAs pHEMT enhancement / depletion-mode device (E/D-mode) device model handbook,” ver.1.0.4, May. 2014.
[52] On San A. Tang and Colin S. Aitchison, “A very wide-band microwave MESFET mixer using the distributed mixing principle,” IEEE Trans. Microw. Theory Techn., vol. 33, no. 12, pp. 1470–1478, Dec. 1985.
[53] S.-H. Chen, Y.-C. Liu, S.-H. Weng, H.-Y. Chang, K. Chen, and S.-H. Wu, “A monolithic DC-31 GHz distributed amplifier using cascode HBT-NMOS gain cell in 0.18 μm SiGe technology,” in Asia-Pacific Microw. Conf., Dec. 2012, pp. 211–213.
[54] F. Eshghabadi, M. Dousti, F. Temcamani, B. Delacressoniere, and J.-L. Gautier, “A 2.4-GHz front-end system design for WLAN applications using 0.35μm SiGe BiCMOS technology,” in Proc. IEEE 3rd Int. Conf. ICTTA, Damascus, Syria, Apr. 2008, pp. 1–5.
[55] S.-H. Weng, H.-Y. Chang, C.-C. Chiong, and Y.-C. Wang, “Gain-bandwidth analysis of broadband Darlington amplifiers in HBT-HEMT process,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3458–3473, Nov. 2012.
[56] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko, and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5–65-GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1516–1522, Apr. 2013.
[57] W.-C. Wang, “Design of microwave / millimeter-wave broadband mixers and low noise amplifiers,” Master. Thesis, Elect. Eng., National Central University, Taiwan, 2014.
[58] H.-C. Chiu, “Active wideband down-converter for microwave and millimeter-wave applications,” Master. Thesis, Elect. Eng., National Central University, Taiwan, 2011.
[59] S.-B. Cohn, “A class of broadband three-port TEM-mode hybrid,” IEEE Trans. Microw. Theory Techn., vol. 19, Issue 2, pp. 110–116, Feb. 1968.
[60] “Sonnet® User’s Guide,” 13th ed. Sonnet Softw. Inc., North Syracuse, NY, 2009.
[61] A. Suárez, and R. Queré, Stability Analysis of Nonlinear Microwave Circuits, Boston, MA: Artech House, 2003, Chapter 2.
[62] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Englewood Cliffs, N.J.: Prentice-Hall, 1984, Chapter 5.
[63] L. Samoska, K.-Y. Lin, H. Wang; Y.-H. Chung, M. Aust, S. Weinreb, and D. Dawson, “On the stability of millimeter-wave power amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 429–432.
[64] Stephen A. Mass, Nonlinear Microwave and RF Circuits second edition, Artech House, 2003.
[65] T. Koivisto and E. Tiiliharju, “A self-oscillating LNA-mixer,” Norchip, 2010.
[66] WIN Semiconductors, “0.5-μm InGaAs pHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.3.3, Sep, 2010.
[67] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[68] J. Lin, K.-Y. Chen, D.-A. Humphrey, R.-A. Hamm, R.-J. Malik, A. Tate, R.-F. Kopf, and R.-W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 379–381, Nov. 1995.
[69] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, pp. 1415–1424, Sep. 2004.
[70] X. Zhang, X. Zhou, and A.-S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 5, pp. 895–902, May. 1992.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2015-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明