博碩士論文 101521047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.204.2.190
姓名 劉宣宏(Xuan-Hong Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微型化寬頻六埠網路接收機前端電路
(Wideband Six-Port Receiver Front-End With Compact Size)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以微型化寬頻六埠網路接收機前端電路為主題,以威爾金森分波器、直交耦合分波器及功率偵測器組成六埠網路接收機前端電路,並經由增加級數,以及使用集總元件構成橋式T線圈取代傳輸線,同時達到寬頻與微型化的效果。電路的製做上,則以平衡式電感與平行板電容,於積體被動元件(IPD)製程中實現微型化之橋式T線圈作為基本組件,進而能以系統級封裝方式實現寬頻六埠網路接收機之前端電路。

電路設計上,首先以積體被動元件實現各式橋式T線圈做為測試電路, 驗證橋式T線圈電路模型與萃取方式之可行性。接著將橋式T線圈應用於威爾金森分波器設計,以大幅縮小電路尺寸而不減損頻寬,並分別實現二級與四級寬頻威爾金森分波器。其中二級威爾金森分波器中心頻率為2.2GHz,電氣尺寸僅惟中心頻率下之0.024λ0×0.020λ0,頻寬則為120%(反射損耗大於15dB);四級威爾金森分波器中心頻率設計於12GHz,頻寬可達173%(反射損耗大於10dB),電氣尺寸僅為中心頻率下的0.136λ0×0.047λ0。寬頻直交耦合分波器方面,二級直交耦合分波器中心頻率設計於1.95GHz,電氣尺寸僅為中心頻率0.028λ0×0.018λ0
,頻寬則為53.8%(反射損耗大於15dB);三級直交耦合分波器中心頻率為2.2GHz,頻寬可達83.6%,電氣尺寸僅為中心頻率下之0.045λ0×0.021λ0。

最後,將威爾金森分波器、直交耦合分波器與功率偵測器整合成六埠網路接收機前端電路,分別實現2.6GHz之微型化六埠網路接收機前端電路(電氣尺寸0.05λ0×0.067λ0)與中心頻率1.95GHz之寬頻六埠網路接收機前端電路,其電氣尺寸為0.227λ0×0.147λ0,頻寬則為64.1%(反射損耗大於10dB)。

本研究透過橋式T線圈有效縮小電路尺寸,再藉由多級電路設計有效提升頻寬,進而達成實現微型化寬頻六埠網路接收機的設計目標,可助於將六埠網路接收機技術導入次世代手持式無線通訊裝置。
摘要(英) The target of this work is the development of wideband six-port receiver front-end with compact size, which is composed of a Wilkinson power divider, branch line couplers and power detectors. The wide bandwidth is achieved by multi-section designs of the divider and coupler, while the circuit size can be largely reduced by using the bridged-T coils to substitute transmission line sections. In this way, compact circuit size and wide bandwidth can be achieved simultaneously.
The bridged-T coil can be designed as a wideband transmission-line equivalent. It can be realized by a balanced inductor and metal-insulator-metal (MIM) capacitors in the integrated passive device (IPD) process with very compact circuit size. The bridged-T coil can be used to replace the required transmission line sections in wideband divider and coupler designs to achieve wideband and compact six-port network using the IPD process, which can then enable the SiP (system in package) design of six-port receiver front-end.
Firstly, test kits of bridge-T coils in IPD are implemented to demonstrate the design procedure and performance. They are then applied to wideband Wilkinson power divider designs to achieve compact size with no bandwidth reduction. Two kinds of Wilkinson power divider designs are presented, i.e. two-section and four-section designs. The center frequency of the two-section Wilkinson power divider is designed at f0 = 2.2 GHz with a circuit size of only 0.024λ0×0.020λ0 at f0 and a bandwidth of 120% (return loss > 15dB). The four-section one is designed with f0 = 12 GHz, and the circuit size is only 0.042λ0×0.017λ0 at f0 with a bandwidth of 173% (return loss > 10dB). Then, bridged-T coils are also used in the design of two kinds of wideband branch line coupler with compact size. The two-section branch line coupler is designed with an f0 of 1.95 GHz, and the circuit size is 0.028λ0×0.018λ0 at f0 with a bandwidth of 53.8% (return loss >15dB). The three-section one is designed at 2.2 GHz with bandwidth of 83.6% and a circuit size of 0.045λ0×0.021λ0 at f0.
The proposed wideband Wilkinson power divider and branch line couplers are then integrated with power detectors to form two compact six-port receiver front-ends. The first one is designed at 2.6 GHz with an electrical size 0.024λ0×0.020λ0 at f0. The second one is designed at 1.95 GHz with a circuit size of 0.227λ0×0.147λ0 at f0 and a wideband bandwidth of 64.1% (return loss >10dB).

By using bridged-T coils to implement transmission lines, the circuit size of six-port network can be largely reduced, while the bandwidth can be improved by using the multi-section divider and coupler designs. The proposed six-port receiver front-end features very compact size and wide bandwidth, and can be implemented in handheld wireless communication devices for mobile communication applications.
關鍵字(中) ★ 六埠網路
★ 接收機
★ 橋式線圈
★ 微型化
關鍵字(英) ★ Six-port
★ Receiver
★ Bridged-T coil
★ Miniature
★ Compact size
論文目次 第一章 緒論 ............................................................................................................- 1 -
1.1 研究動機.............................................................................................................- 1 -
1.2 文獻回顧.............................................................................................................- 3 -
1.3 章節介紹.............................................................................................................- 5 -
第二章:橋式 T 線圈 ................................................................................................- 6 -
2.1 橋式 T 線圈設計原理........................................................................................- 6 -
2.2 橋式 T 線圈電路設計...................................................................................... - 11 -
2.3 實作與量測驗證 ..............................................................................................- 15 -
2.4 橋式 T 線圈 Q 值討論.....................................................................................- 28 -
2.5 結果討論...........................................................................................................- 33 -
第三章:微型化寬頻威爾金森功率分配器...........................................................- 34 -
3.1 二級威爾金森功率分配器電路設計 ..............................................................- 34 -
3.1.1 電路架構與原理 .......................................................................................- 34 -
3.1.2 實作與量測驗證 .......................................................................................- 37 -
3.2 四級威爾金森功率分配器電路設計 ..............................................................- 41 -
3.2.1 電路架構與模擬 .......................................................................................- 41 -
3.2.2 第一版實作與量測驗證 ...........................................................................- 43 -
3.2.3 第二版實作與量測驗證 ...........................................................................- 46 -
3.3 結果討論...........................................................................................................- 50 -
第四章:微型化寬頻枝幹線耦合器.......................................................................- 53 -
4.1 微型化二級枝幹線耦合器電路設計 ..............................................................- 53 -
4.1.1 電路架構與模擬 .......................................................................................- 53 -
4.1.2 實作與量測驗證 .......................................................................................- 56 -VII
4.2 微型化三級枝幹線耦合器電路設計 ..............................................................- 61 -
4.2.1 電路架構與模擬 .......................................................................................- 61 -
4.2.2 第一版實作與量測驗證 ...........................................................................- 63 -
4.2.3 第二版實作與量測驗證 ...........................................................................- 71 -
4.3 結果討論...........................................................................................................- 79 -
第五章:微型化六埠網路接收機前端電路...........................................................- 83 -
5.1 六埠網路接收機簡介 ......................................................................................- 83 -
5.2 微型化六埠網路接收機前端電路 ..................................................................- 86 -
5.2.1 電路架構與模擬 .......................................................................................- 86 -
5.2.2 實作與量測驗證 .......................................................................................- 92 -
5.3 寬頻微型化六埠網路接收機前端電路 ........................................................- 102 -
5.3.1 電路架構與模擬 .....................................................................................- 102 -
5.3.2 實作與量測驗證 .....................................................................................- 105 -
5.4 結果討論......................................................................................................... - 116 -
第六章 結論 ........................................................................................................ - 118 -
參考文獻...............................................................................................................- 120
參考文獻 [1] E. L. Ginzton,W. R. Hewlett, J. D. Noe, "Distributed amplification," Proc IRE, vol.36, pp. 956-969, Aug. 1948.
[2] E. M. Chase and W. Kennan, “A power distributed amplifier using constant-R networks,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 811–815, Jun. 1986.
[3] T. S. Horng, J. M.Wu, L.Q.Yang, and S. T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 12, pp. 2327–2333, Dec. 2003.
[4] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中 央大學, 2011.
[5] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大學, 2012.
[6] W. R. Eisenstadt and Y. Eo "S-parameter-based IC interconnect transmission line characterization", IEEE Trans. Component, Packaging, Manufacturing Technology, vol. 15, pp.483 -490, Aug. 1992
[7] B. Rong, J. Burghartz, L. Nanver, B.Rejaei and M. van der Zwan "Surface- passivated high-resistivity silicon substrates for RFICs", IEEE Electron Device Lett., vol. 25, no. 4, pp.176 -178,Apr. 2004
[8] S. B. Cohn, "A class of broadband three-port TEM-mode hybrid," IEEE Trans. Microw, Theory Tech, vol.19, Issue 2, pp.110-116, Feb. 1968.
[9] R. Mirzavand, M. M. Honari, A. Abdipour, and G. Moradi, “Compact microstrip Wilkinson power dividers with harmonic suppression and arbitrary power division ratios,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 61–68, Jan. 2013.
[10] Y.-S. Lin and J.-H. Lee, “Miniature ultra-wideband PD using bridged-T coils,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp.391–393, Aug. 2012
[11] T-S. Dang, C.W. Kim, and S.-W. Yoon "Ultra-wideband power divider using three parallel-coupled lines and one shunt stub," Electron. Lett., vol. 50, no.2, pp. 95-96, Jan. 2014
[12] X. Lan, P. Chang-Chien, F. Fong, D. Eaves, X. Zeng and M. Kintis "Ultra -wideband power divider using multi-wafer packaging technology", IEEE Microw. Wireless Compon. Lett., vol. 21, no.1, pp.46-48, Aug. 2011
[13] H.-R. Ahn, B.Kim, and S. Nam, “Compact UHF 3 dB MCCT power dividers,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp.445–447, Jul. 2014
[14] C-L. Chang, and C.-H. Tseng "Compact Wilkinson power divider using two-section asymmetrical T-structures," Electron. Lett., vol. 49, no.9, pp. 546-547, Apr. 2013
[15] K. Song and Q. Xue "Novel ultra-wideband (UWB) multilayer slotline power divider with bandpass response", IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp.13-15,Jan. 2010
[16] M. Muraguchi, T. Yukitake, and Y. Naito, “Optimum design of 3 dB branch-line couplers using microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-31, no. 8, pp. 674–678, Aug. 1983.
[17] D.Titz, F. Ferrero, R. Pilard, C. Laporte, S. Jan, H. Ezzeddine, F. Gianesello, D.Gloria, G. Jacquemod, C. Luxey, "New wideband miniature branchline coupler on IPD technology for beamforming applications, " IEEE Trans. Compon., Packag. Manuf.Technol., vol. 4, no. 5, pp. 911-921, May. 2014
[18] C. H. Tseng and C. L. Chang , "A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures," IEEE Trans. Microw. Theory Tech., vol. 60, no.7, pp. 2085 -2092, July. 2012
[19] Y.C.Tseng and T.G.Ma, "On-chip X-band branch-line coupler using glass integrated passive device technology," Electron. Lett., vol. 48, no.25, pp. 1605-1606, Dec. 2012
[20] H.R. Ahn and S. Nam, "Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits," IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1067-1078, March .2013
[21] Y.-S. Lin and J.-H. Lee, " Miniature butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz Applications, " IEEE Trans. Microw. Theory Techn., vol.61, no.7, pp. 2594-2602, July. 2013
[22] Haroun, C. plett, C. Hsu, C. Cheng, "Compact 60-GHz IPD-based branch-line coupler for system-on-package V-band radios," IEEE Tran. Comp. Pack. Manu. Tech., Vol. 2, Iss. 1, pp. 1070-1074, July. 2012
[23] I. Haroun, J. Wight, C. Plett , A. Fathy and D.-C. Chang "Experimentalanalysis of a 60 GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios", IEEE Microw. Wireless Compon. Lett., vol. 20, no.4, pp.211-213,Apr. 2010
[24] S. O. Tatu , E. Moldovan , K. Wu , R. G. Bosisio and T. A. Denidni "Ka-band analog front-end for software-defined direct conversion receiver", IEEE Trans. Microw. Theory Tech., vol.53, no. 9, pp.2768-2776, Sep 2005
[25] D. M. Pozar, Microwave Engineering, 3rded., Jhon Wiley & Sons, Inc., 2005.
[26] S. Z. Ibrahim , A. Abbosh and M. Bialkowski "Design of wideband six-port network formed by in-phase and quadrature Wilkinson dividers", IET Microw. Antennas Propag., vol.6, no.11, pp.1215 -1220, Aug 2012
[27] S. Z. Ibrahim, A. M. Abbosh, M. A. Antoniades, "Direct quadrature phase shift keying modulation using compact wideband six-port networks" IET Microw. Antennas Propag., vol. 6, no. 8, pp. 854-861, June 2012
[28] A. Kolpin , S. Winter and R. Weigel "A six-port receiver′s analog front-end of reduced size based on a multi-layer layout", IEEE MTT-S Int. Microwave Symp. Dig., pp.1011 -1014 2007
[29] A. Koelpin , G. Vinci , B. Laemmle , D. Kissinger and R. Weigel "The six-port in modern society", IEEE Microw. Mag., vol.11, no.7, pp.35-43, Dec. 2010
指導教授 林祐生 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明