博碩士論文 101521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.234.214.113
姓名 葉善茹(Shan-ju Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 不確定性Takagi-Sugeno模糊系統之觀察器與控制器合成設計
(Observer and controller synthesis for uncertain T-S fuzzy systems)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文對不確定性模糊系統討論了觀察器與基於觀察器下的強健控制器合成設計,文章中所討論的觀察器與基於觀察器下的強健控制器設計方法都是基於Takagi-Sugeno (T-S) 模糊系統。首先,在第二章我們引用了未知輸入設計概念與選擇設計動態觀察器模型而不是古典的觀察器模型,同時,藉由廣義反矩陣的輔助求出系統設計參數,並且由李亞普諾夫函數(Lyapunov function)推導出能使估測誤差收斂到零的條件,上述條件最後是線性矩陣不等式的型態,可由軟體工具快速有效的找出最佳解,最後,數値範例證實了文章中所提出的模糊觀察器設計方法,在有擾動環境下仍然有很好的表現。
另一個在論文中被討論的問題是對於不確定性T-S模糊系統做基於觀察器下的強健控制。在很多真實實驗中並不是所有狀態都可以量測得到,因此,在第三章中提出了基於觀察器下的強健性控制器合成方法。根據文獻指出,對於不確定性模糊系統所做的觀察器與控制器設計普遍會遇到兩個問題。第一個問題是所得到的穩定條件是雙線性矩陣不等式(Bilinear Matrix Inequalities: BMIs),其型態無法運用現有的MATLAB Linear Matrix Inequality (LMI) 工具求最佳解,第二個問題是穩定條件有交叉偶合(cross-coupled)項,其需要用兩步驟求解法,上述的求解方法將會增加解的保守性。第三章提出的設計方法解決了以上兩個問題,達到狀態估測並回授控制器完成系統穩定之目的。最後,模擬結果展現了我們設計的觀察器與控制器是有效的。
摘要(英) The thesis proposes the observer and robust observer-based controller synthesis for uncertain Takagi-Sugeno (T-S) fuzzy systems. At first, in Chapter 2, we introduce unknown input concept and choose to design dynamic observer instead of classical observer. In the meantime, designed system parameters are found with the aid of generalized inverse. Moreover, based on the Lyapunov theory, sufficient conditions making estimated errors converge to zero are derived in the form of linear matrix inequalities (LMIs). Feasible solutions can be found by MATLAB LMI tool box efficiently. Finally, a numerical example is given to substantiate the performance of fuzzy observer under the environment with uncertainties as expected.
The other problem discussed in this thesis is the robust observer-based control for the uncertain T-S fuzzy system. It is known that, in many practical experiments, not all of the system states can be measured. Hence, in Chapter 3, we develop a design method of robust observer-based controller for T-S fuzzy systems. According to the survey of related papers, there are two common problems we will face when designing observer and controller for uncertain fuzzy systems. The first problem is that sufficient conditions we obtain are in the form of bilinear matrix inequalities (BMIs) which could not be solved easily. The second problem is that there are cross-coupled terms in the sufficient conditions having to be solved by two-stage procedure which will enhance the conservatism of the result. In Chapter 3, the proposed method is capable of overcoming previous mentioned two problems. Estimated system states feedback to the controller so that the stability of the system is achieved. Consequently, the results of simulation show that synthesized fuzzy observer and robust observer-based controller work effectively.
關鍵字(中) ★ T-S 模糊系統
★ 觀察器
★ 控制器
關鍵字(英) ★ T-S fuzzy systems
★ observer
★ controller
論文目次 Contents
Page
Abstract II
List of Figures IV

Chapter 1 1
Introduction 1
1.1 Review of previous researches 1
1.2 Motivation of the thesis 5

Chapter 2 6
Unknown Input Based Observer Synthesis for Uncertain T-S Fuzzy Systems 6
2.1 Introduction 6
2.2 System description and problem formulation 6
2.3 Observer synthesis 8
2.4 Numerical example 15
2.5 Summary 23

Chapter 3 24
A Synthesis of Observer-based Controller for Stabilizing Uncertain T-S Fuzzy Systems 24
3.1 Introduction 24
3.2 System description and problem formulation 24
3.3 Fuzzy observer and fuzzy robust observer-based controller synthesis 27
3.4 Numerical example 37
3.5 Summary 44

Chapter 4 45
Conclusion and future works 45

Reference 47
參考文獻 [1] K. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41-51, 1998.
[2] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability condition and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250-265, 1998.
[3] P. Korba, R. Babuska, H. B. Verbruggen, and P. M. Frank, “Fuzzy gain scheduling: Controller and observer design based on Lyaponov method and convex optimization,” IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 285-298, 2003.
[4] D. W. Gu, and F. W. Poon, “A robust state observer scheme,” IEEE Trans. Autom. Control, vol. 46, no. 12, pp. 1958-1963, 2001.
[5] A. Akhenak, M. Chadli, J. Ragot, and D. Maquin, “Design of robust observer for uncertain takagi-sugeno models,” Proc. Fuzzy Sys., Budapest, Hungary, pp. 1327-1330, July 2004.
[6] W. Chen, and M. Saif, “Unknown input observer design for a class of nonlinear systems: an LMI approach,” Proc. Am. Control Conf., Minneapolis, Minnesota, USA, Jun. 2006.
[7] S. Mondal, G. Chakraborty, and K. Bhattacharyya, “LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties,” Proc. Int. J. Control Automa. Syst., Korea, pp. 210-219, 2010.
[8] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp.676-697, 2006.
[9] K. Tanaka, and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, New York: Wiley, 2001.
[10] H. K. Lam, H. Li, and H. Liu, “Stability analysis and control synthesis for fuzzy-observer-based controller of nonlinear systems: a fuzzy-model-based control approach,” IET Control Theory Appl., vol. 7, no. 5, pp. 663-672, 2013.
[11] T. Taniguchi, K. Tanaka, and H. O. Wang, “Fuzzy descriptor systems and nonlinear model following control,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 442-452, 2000.
[12] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, 1996.
[13] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116-132, 1985.
[14] T.V. Dang, W. J. Wang, L. Luoh, and C. H. Sun, “Adaptive observer design for the uncertain takagi-sugeno fuzzy system with output disturbance,” IET Contr. Theory Appl., vol. 6, no. 10, pp. 1351-1366, 2012.
[15] P. Bergsten, R. Palm, and D. Driankov, “Observers for takagi–sugeno fuzzy systems,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 32, no. 1, pp. 114-121, 2002.
[16] H. H. Choi, and K. S. Ro, “LMI-based sliding-mode observer design method,” Proc. Inst. Elect. Eng. Contr. Theory Appl., vol. 152, no. 1, pp. 113-115, 2005.
[17] H. H. Choi, “LMI-based nonlinear fuzzy observer-controller design for uncertain mimo nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 956-971, 2007.
[18] T. V. Dang, W. J. Wang, C. H. Huang, C. H. Sun, and L. Luoh, “Observer synthesis for the T-S fuzzy system with uncertainty and output disturbance,” J. Intell. Fuzzy Syst., vol. 22, no. 4, pp. 173-183, 2011.
[19] M. Chadli, and H. R. Karimi, “Robust observer design for unknown inputs takagi-sugeno models,” IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 158-164, 2013.
[20] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, 1996.
[21] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41-51, 1998.
[22] Z. H. Xiu, and G. Ren, “Stability analysis and systematic design of takagi-sugeno fuzzy control systems,” Fuzzy Sets Syst., vol. 151, no. 1, pp. 119-138, 2005.
[23] H. Lu, X. Huang, X. Z. Gao, X. Ban, and H. Yin, “Stability analysis of the simplest takagi-sugeno fuzzy control system using circle criterion,” J. Syst. Eng. Electron., vol. 18, no. 2, pp. 311-319, 2007.
[24] S. T. Zhang and S. J. Wang, “Stability analysis of discrete T-S fuzzy systems,” in Proc. 2008 Control Decis. Conf., China, July, 2008, pp. 2045-2048.
[25] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and robust fuzzy control for uncertain nonlinear systems,” IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum., vol. 30, no. 6, pp. 825-840, 2000.
[26] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy controller,” Int. J. Man-Mach. Stud., vol. 7, pp. 1-13, 1975.
[27] R. M. Tong, M. Beck, and A. Latten, “Fuzzy control of the activated sludge wastewater treatment process,” Automatica, vol. 16, no. 6, pp.695-701, 1980.
[28] E. Kim, “A new computational approach to stability analysis and synthesis of linguistic fuzzy control system,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 379-388, 2004.
[29] H. A. Malki, H. Li, and G. Chen, “New design and stability analysis of fuzzy proportional-derivative control systems,” IEEE Trans. Fuzzy Syst., vol. 2, no. 4, pp. 245-253, 1994.
[30] D. Misir, H. A. Malki, and G. Chen, “Design and analysis of a fuzzy proportional-integral-derivative controller,” Fuzzy sets Syst., vol. 79, pp.297-314, 1996.
[31] H. O. Wang, K. Tanaka, and M. F. Griffin, “Parallel distributed compensation of nonlinear systems by takagi-sugeno fuzzy model,” in Proc. Fuzzy Syst., Yokohama, Mar. 1995, pp. 531-538.
[32] H. O. Wang, K. Tanaka, and M. F. Griffin, “An analytical framework of fuzzy modeling and control of nonlinear systems: stability and design issues,” in Proc. Am. Control Conf., Seattle, Jun. 1995, pp.2272-2276.
[33] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed H2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy syst., vol. 8, no. 3, pp. 249-265, 2000.
[34] H. D. Tuan, P. Apkarian, T. Narikiyo, and M. Kanota, “New fuzzy control model and dynamic output feedback parallel distributed compensation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 13-21, 2004.
[35] K. Y. Lian and J. J. Liou, “Output tracking control for fuzzy systems via output feedback design,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 628-639, 2006.
[36] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381-392, 2001.
[37] C. S. Tseng and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[38] H. K. Lam, H. Li, and H. Liu, “Stability analysis and control synthesis for fuzzy-observer-based controller of nonlinear systems: a fuzzy-model-based control approach,” IET Control Theory Appl., vol. 7, pp. 663-672, 2013.
[39] B. S. Chen, C. S. Tseng, and H. J. Uang, “Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 571-585, 1999.
[40] S. Tong, T. Wang, and H. X. Li, “Fuzzy robust tracking control for uncertain nonlinear systems,” Int. J. Approx. Reasoning, vol. 30, pp. 73-90, 2002.
[41] A. Golabi, M. Beheshti, and M. H. Asemani,“ robust fuzzy dynamic observer-based controller for uncertain takagi-sugeno fuzzy systems,” IET Control Theory Appl., vol. 6, pp. 1434-1444, 2012.
[42] A. S. Tlili, N. B. Braiek, “Systematic linear matrix inequality conditions to design a robust decentralized observer-based optimal control for interconnected systems,” IET Control Theory Appl., vol. 6, pp. 2737-2747, 2012.
[43] M. Darouach, M. Zasadzinski, and S. J. Xu, “Full-order observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 606-609, 1994.
[44] F. Yang, and R. W. Wilde, “Observers for linear systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 33, no. 7, pp. 677-681, 1988.
[45] B. Sfaihi, and O. Boubaker, “Full order observer design for linear systems with unknown inputs,” Proc. Int. Conf. Ind. Technol., Tunisia, pp. 1233-1238, Dec. 2004.
[46] N. Bouguila, W. Jamel, A. Khedher, and K. B. Othman, “Multiple observer design for a nonlinear takagi-sugeno system submitted to unknown inputs and outputs,” IET Signal Process., vol. 7, no. 8, pp. 635-645, 2013.
[47] S. Hui, and S. H. Zak, “Observer design for systems with unknown inputs,” Int. J. Appl. Math. Comput. Sci., vol. 15, no. 4, pp. 431-446, 2005.
[48] J. Zarei, and S. Ahmadizadeh, “LMI-based unknown input observer design for fault detection,” Proc. Int. Conf. Control Instrum. Automat., Shiraz, pp. 1130-1135, Dec. 2011.
[49] J. C. Lo, M. L. Lin, “Observer-based robust control for fuzzy systems using two-step procedure,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 350-359, 2004.
[50] M. Chadli and A. E. Hajjaji, “Comment on : observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets Syst., vol. 157, pp.1276-1281, 2006.
[51] D. G. Luenberger, “An Introduction to Observers,” IEEE Trans. Autom. Control, vol. 16, no. 6 pp. 596-602, 1971.
[52] E. M. Jafarov, “Robust Coupling Linear State Observer-Controller Design for MIMO Systems with Mismatched and Unstructured Uncertainties,” Online J. Electron. Electr. Eng., vol. 2, no. 1, pp.155-158, 2010.
[53] R. Penrose, “A generalized inverse for matrices,” Proc. Math. Camb. Philos. Soc., vol. 51, pp. 406-413, 1955.
[54] Z. Gao, X. Shi, and S. X. Ding, “Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 38, no. 3, pp. 875-880, 2008.
指導教授 王文俊(Wen-june Wang) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明