博碩士論文 101521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.238.248.200
姓名 張榮貴(Jung-Kuei Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於HPSO-TVAC演算法於多目標追蹤系統之研究
(Multi-Objects Tracking Based on HPSO-TVAC Algorithm)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了提升追蹤目標物的速度和解決目標物被遮蔽的問題,本論文採用改良的粒子最佳化演算法“自組織隨時調變係數的粒子最佳化演算法”來對目標物進行追蹤。
HPSO-TVAC演算法主要利用族群之間各個成員的相互關係,使族群整體朝向更好的目標前進的一種演算法,並利用改良的自適應搜尋框,使搜尋框大小在追蹤目標追蹤不到的時候變大,在一直能追蹤到追蹤目標時,保持較小的大小,使粒子們能搜尋得更加精確,並能有效解決遇到遮蔽物的情況。
改良的種子區域成長法,主要是改良產生種子的部分,使原本標記出來需要重新搜尋四鄰位置的種子數量減少,其目的是讓我們區分不同的目標物,並使各個目標物各自連成一塊,使我們可以算出各個目標的中心位置。
本論文使用背景相減法以分離背景和移動目標,改良的種子區域生長法區分各個不連通的目標物,並且算出各個目標的中心位置,利用顏色直方圖來建構目標物的模型,以HPSO-TVAC來對各個目標物進行追蹤。最後比較其他不同的演算法進行模擬測試,並且將HPSO-TVAC實際測試於即時的多目標追蹤。
摘要(英) In order to improve the tracking speed and solve the shadowing problem, this paper trace objects by “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients (HPSO-TVAC)”, which improved from PSO algorithm.
We use the relationship between the members of the groups to make whole groups go along toward the way of better goals by HPSO-TVAC algorithm, and we also uses “adaptive searching window”. Then the searching window will zoom in or out which depends on global best fitness. While we can find the targets, we will make the searching window contains small, but while we cannot find the targets, we will let the searching window bigger to find the targets.
The improved seeded region growing method, which we mainly improved the quantity of seeds, is presented in this study. We reduce quantity of seeds to increase the efficiency, and it can let us distinguish between different targets.
In this study, we use background subtraction to distinguish background and moving objects, and we also use improved seeded region growing method to distinguish different targets. Then we use color histograms to build target models, and trace every targets by HPSO-TVAC algorithm.
關鍵字(中) ★ 粒子群最佳化演算法
★ 自組織隨時調變係數的粒子最佳化演算法
★ 物件追蹤
★ 物件偵測
★ 種子區域生長法
關鍵字(英) ★ PSO
★ HPSO-TVAC
★ object tracking
★ object detection
★ seeded region growing method
論文目次 目錄

頁次
中文摘要 iii
英文摘要 iv
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 簡介 1
1-2 研究動機與方法 1
1-3 文獻回顧與探討 2
1-4 主要貢獻 3
1-5 論文架構 4
第二章 軟硬體與系統模型 5
2-1 外部硬體 5
2-2 內部軟體 6
2-3 系統架構 7
第三章 移動物體偵測與建模 8
3-1 色彩空間轉換 8
3-1-1 RGB色彩空間 8
3-1-2 Lab色彩空間 9
3-1-3 YCBCR色彩空間 9
3-1-4 HSV色彩空間 10
3-2 移動物體偵測 11
3-2-1 時間軸上的中間值法(Temporal median) 12
3-2-2 非前景像素更新法(Selective update using non-foreground pixels) 12
3-2-3 卡爾曼濾波器(Kalman filter) 12
3-2-4 高斯混合(Mixture of Gaussians)(MoG) 12
3-3 形態學處理 13
3-3-1 膨脹(Dilation) 13
3-3-2 侵蝕(Erosion) 15
3-3-3 斷開(Opening) 16
3-3-4 閉合(Closing) 17
3-4 區域分割演算法 19
3-4-1 區域分裂與合併(Region Splitting and Merging) 19
3-4-2 行程標記法 20
3-4-3 種子區域生長法(Seeded Region Growing) 21
3-4-4 改良式種子區域生長法 23
3-5 目標物建模 36
第四章 移動物體追蹤方法與分析 42
4-1 HPSO-TVAC演算法 43
4-1-1 基本的PSO演算法 43
4-1-2 HPSO-TVAC演算法 46
4-2 解空間與搜尋空間 52
4-3 適應函數分析 56
4-4 遮蔽問題處理 57
4-5 偵測與追蹤流程 62
第五章 實驗結果與討論 64
5-1 模擬實驗 64
5-2 實際實驗測試 71
第六章 結論與建議 83
6-1 結論 83
6-2 建議 84
參考文獻 85
文章發表 90
參考文獻 參考文獻

[1] M. Kass, A. Witkin and D. Terzopoulos, “Snake: active contour models”, IJCV. , 1(4): 321-332, 1988.
[2] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 780–785, July 1997.
[3] N. Peterfreund, “The Velocity Snake,” Proc. IEEE Nonrigid and Articulated Motion Workshop, Virgin Islands, 1997.
[4] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 564–569, June 2000.
[5] D.-S. Jang and H.-I. Choi, “Active models for tracking moving objects, ” Pattern Recognit., vol. 33, no. 7, pp. 1135–1146, 2000.
[6] D. Comaniciu , V. Ramesh,Meer, P. Meer, “Kernel-based object tracking”, Real-Time Vision & Modeling Dept., Siemens Corporate Res., Princeton, NJ, USA.
[7] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf., pp. 262–352, 2000.
[8] S. Ju, M. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
[9] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. on Pattem Analysis and Machine Intelligence, vol. 16, pp.641-647, 1994
[10] J. Kennedy and R. C. Eberhert, “Particle Swarm Optimization”, in Proceeding of IEEE International Conference on Neural Networks, 1942-1948, 1995.
[11] A. Ratnaweera, S. Halgamuge, H. Watson, “Self- organizing hierarchical particle swarm optimizer with time varying accelerating coefficients,” TEC, 8(3): 240 - 255, June 2004.
[12] R. C. Eberhert and J. Kennedy. “A New Optimizer Using Particle Swarm Theory”, in Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan., IEEE Service Center, Piscataway, NJ, 39-43,1995
[13] A. Djouadi, O. Snorrason and F. D. Garber, “The Quality of Training-Sample Estimates of the Bhattacharyya Coefficient”, IEEE Transactions Pattern Analysis Machine Intelligence, Vol. 12, pp. 92-97, 1990.
[14] T. Kailath, “The Divergence and Bhattacharyya Distance Measures in Signal Selection”, IEEE Transactions Communication Technology, Vol. COM-15, pp. 52-60, 1967.
[15] Microsoft Corp., Kinect, http://www.xboxkinection.com
[16] S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. W. Yeung, and F. H. Leung, “Hybrid particle swarm optimization with wavelet mutation and its industrial applications,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 3, pp. 743–763, Jun. 2008.
[17] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H. Chung, Y. Li, and Y.-h. Shi, “Particle swarm optimization with an aging leader and challengers,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 2, pp. 241–258, 2013.
[18] J. A. Leese, C. S. Novak, V. R. Taylor , “The Determination of Cloud Motion Patterns from Geosynchronous Satellite Image Data,” Patter Recognition, Clustering, Statistic, Grammars, Learning, Vol.2, No.5, pp.272 – 292 , 1970.
[19] S. Murali and R. Girisha, 2009, “Segmentation of Motion Objects from Surveillance Video Sequences using Temporal Differencing Combined with Multiple Correlation,” in Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 472-477.
[20] A. Elgammal, R. Duraiswami, D. Harwood and L. S. Davis, “Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance,” in Proc. Of the IEEE, vol. 90, issue 7, pp. 1151-1163, 2002.
[21] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, pp. 1337-1342, 2003.
[22] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” Proc. IEEE, Vol. 90, No. 7, pp. 1151-1163, 2002.
[23] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, 1997.
[24] C. Stauffer, and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 246-252, 1999.
[25] Genesys LogicInc. GL846 high speed USB2. 02-in-1 scanner controller with fast ADF 1.05, January 2008.
[26] Jain A. K. Fundamentals, “digital image processing”. New York Prentice Hall, 1989.
[27] L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, June 1994.

[28] http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_comparison.html
[29] http://wiki.mbalib.com/zh-tw/卡方檢驗/
[30] T. Kobayashi, K. Nakagawa, J. Imae and G. Zhai, “Real Time Object tracking on Video Image Sequence using Particle Swarm Optimization”, International Conference on control, Automation and systems, pp 1773-1778, Seoul, Korea, 2007.
[31] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. “Sequentical Particle Swarm Optimization for Visual Tracking”. In IEEE Conference on Computer Vision and Pattern Reco.
[32] Y. Zheng, Y. Meng. “Adaptive Object Tracking using Particle Swarm Optimization”. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2007, pp.43-48.
[33] Z.-H. Zhan, J. Zhang, Y. Li, and H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 39, no. 6, pp. 1362–1381, Dec. 2009.
[34] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 832–847, Dec. 2011.
[35] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of mulitimodal functions,” IEEE Trans Evol. Comput. 2006.
[36] 顏妙純,「一個即時移動物偵測與追蹤的嵌入式系統」,國立中央大學,碩士論文,民國98年
[37] 周建佑,「基於LK演算法及Kinect的動態目標追蹤系統之研究」,國立中央大學,碩士論文,民國101年
[38] 簡隆至,「即時移動物體偵測及自動追蹤系統」,國立台灣科技大學,碩士論文,民國93年
[39] 廖志儒,「人臉辨識在Android平台之實現」,國立中央大學,碩士論文,民國102年
[40] 賴俊良,「移動目標物視覺偵測與追蹤研究」,國立成功大學,碩士論文,民國95年
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明