博碩士論文 101521074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.119.104.238
姓名 李軒宇(Hsuan-yu Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具低電壓穿越能力之單級智慧型太陽能光電系統
(An Single Stage Intelligent PV System with LVRT)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一種併網型單級三相太陽光電系統於配電系統三相故障期間使用二維遞迴式模糊小腦模型類神經網路之實虛功控制法,其中配電三相故障為相對地故障或相對相故障。太陽能光電系統利用單級三相電流控制電壓源之變流器完成最大功率點追蹤法以及低電壓穿透能力之功能,其中最大功率追蹤法採用增量電導法。配電系統三相故障時,控制器以符合E.ON低電壓穿透規範的虛功電流比例補償,調整注入市電端之虛功量,使太陽光電系統產生之實功與注入市電之實功維持平衡以及保持穩定,並限制變流器輸出電流之最大值。本論文首先利用三相電壓大小之最小值來判斷故障電壓之大小,並且提出一種以正序電壓成分之大小判斷故障電壓大小之方法。本論文所提出之智慧型控制器二維遞迴式模糊小腦模型類神經網路將在論文內詳細介紹架構中各層之函數以及藉由最高陡降法所推導之線上學習法則,並且使用李亞普諾夫函數證明其收斂性。最後利用實驗成果來驗證所提出智慧型控制器應用於併網型單級三相太陽光電系統之實虛功控制在配電系統三相故障時之成效,並與比例積分控制器來做比較。
摘要(英) A new active and reactive power control scheme using two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN) for a single-stage three-phase grid-connected photovoltaic (PV) system during grid faults is proposed in this study. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT) control of the PV panel with the function of low voltage ride through (LVRT).Thus, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. Moreover, an incremental conductance (IC) method is adopted for the MPPT control. Furthermore, the constraint of the active and reactive power command of the control scheme is according to the ratio of the reactive current in order to meet the LVRT regulations. To reduce the risk of over-current during LVRT operation, a current limit is predefined for the injection of reactive current. In addition, the recurrent network is embedded in the first layer of the 2D-RFCMANN and a Gaussian basis function is used to model the hypercube structure. The online learning laws of 2D-RFCMANN are derived according to gradient descent method. Additionally, specific learning-rate coefficients for network parameters to assure the convergence of the tracking error are derived using Lyapunov function. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.
關鍵字(中) ★ 太陽能
★ 低電壓穿越
★ 智慧型
★ 電網
關鍵字(英)
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.3論文貢獻 5
1.4論文大綱 6
第二章 太陽能光電系統介紹 7
2.1 簡介 7
2.2 太陽能電池特性 7
2.3 單級與雙級式太陽能光電系統 10
2.4 最大功率點追蹤法介紹 13
2.4.1 擾動觀察法 13
2.4.2 增量電導法 14
2.5 三相座標軸轉換 16
2.5.1 靜止座標軸 18
2.5.2 同步旋轉座標軸 19
2.5.3 三相功率計算 20
2.6 市電角度估測法 21
2.6.1 三相線電壓軸轉換法 21
2.6.2 電壓濾波法 22
2.6.3 鎖相迴路法 22
2.7 變流器之實虛功與電流控制 24
2.8 硬體設備 25
2.8.1 可程控直流電源供應器 26
2.8.2 變流器 28
2.8.3 三相交流電源供應器 30
2.8.4 資料擷取卡 31
第三章 併網型再生能源之低電壓穿越探討 33
3.1 簡介 33
3.2 故障型態分析 33
3.3 正負序成分分析 38
3.4 正負序成分偵測 42
3.5 二階廣義積分器之鎖相迴路 49
3.6 故障電壓偵測與低電壓穿越規範 52
第四章 故障時低電壓穿越之技術探討 54
4.1 簡介 54
4.2 負序電流注入法 54
4.3 模擬與討論 56
4.3.1 不注入負序電流控制策略 57
4.3.2 消除實功諧波之控制策略 58
4.3.3 消除虛功諧波之控制策略 59
4.3.4 同時消除實、虛功諧波之控制策略 60
第五章 二維遞迴式模糊小腦模型類神經網路 61
5.2 簡介 61
5.2 二維遞迴式模糊小腦模型類神經網路架構 61
5.3 二維遞迴式模糊小腦模型類神經網路線上學習法則 65
5.4 二維遞迴式模糊小腦模型類神經網路收斂性分析 67
第六章 單級智慧型太陽能系統 69
6.1 系統簡介 69
6.2 雙模式控制策略 70
6.3太陽光照度改變之實作與討論 71
6.4 以相電壓判斷故障程度之實作與模擬 73
6.4.1 市電系統單相對地故障(Mode I) 74
6.4.2 市電系統單相對地故障(Mode II) 77
6.4.3 市電系統兩相之間故障(Mode II) 80
6.5 以正序電壓成分判斷故障程度之實作與模擬 83
6.5.1 市電系統兩相對地故障(Mode I) 83
6.5.2 市電系統單相對地故障(Mode II) 86
6.5.3 市電系統兩相對地故障(Mode II) 89
第七章 結論與未來研究方向 92
7.1 結論 92
7.2 未來研究方向 92
參考文獻 93
作者簡歷 97
參考文獻 參考文獻
[1] 經濟部能源局,2012年能源產業技術白皮書,經濟部能源局,台北市,2012。
[2] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
[3] S. Jain, V. Agarwal, “Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems,” IET Electric Power Applications, vol. 1, no. 5, pp. 753–762, 2007.
[4] K. H. Hussein, I. Muta, T. Hoshino, M. Osakada, “Maximum photovoltaic power tracking : an algorithm for rapidly changing atmospheric conditions,” IEE Proc. Gener. Transm. Distrib., vol. 142, no. 1, pp. 59-64, Jan. 1995.
[5] T. Esram, P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no 2, pp. 439-449, 2007.
[6] Libo. Wu, Z. Zhao, J. Liu, “A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation,” IEEE Trans. Energy Convers., vol. 22, no 4, pp. 881-886, Dec. 2007.
[7] M. H. J. Bollen, “Characterisation of voltage sags experienced by three-phase adjustable-speed drives,” IEEE Trans. Power Del., vol. 12, no. 4, pp. 1666-1671, Oct. 1997.
[8] V. Ignatova, P. Granjon, S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2054-2061, Oct. 2009.
[9] Grid Code High and Extra High Voltage, E.ON Netz GmbH, Bayreuth, Germany, Apr. 2006. [Online]. Available: http://www.nationalgrid.com/uk
[10] P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, “Flexible active power control of distributed power generation systems during grid faults,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2583-2592, Oct. 2007.
[11] P. Rodriguez, A. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, “Reactive power control for improving wind turbine system behavior under grid faults,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1798-1801, July 2009.
[12] M. Castilla, J. Miret, J. L. Sosa, J. Matas, L. García de Vicuña, “Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 2930-2940, Dec. 2010.
[13] C. T. Lee, C. W. Hsu, P. T. Cheng, “A low-voltage ride-through technique for grid-connected converters of distributed energy resources,” IEEE Trans. Ind. Appl.,vol. 47, no. 4, pp. 1821-1832, July 2011.
[14] J. Miret, M. Castilla, A. Camacho, L. García de Vicuña. , J. Matas, “Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags,” IEEE Trans. Power Electron.,vol. 27, no. 10, pp. 4262-4271, Oct. 2012.
[15] A. macho, M. Castilla, J. Miret, J. C. Vasquez, E. Alarcón Gallo. “Flexible voltage support control for three-phase distributed generation inverters under grid fault,” IEEE Trans. Power Electron., vol. 60, no. 4, pp. 1429-1441, April 2013.
[16] J. Miret, A. Camacho, M. Castilla, L. García de Vicuña, J. Matas, “Control scheme with voltage support capability for distributed generation inverters under voltage sags,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5252-5262, Nov. 2013.
[17] S. Y. Wang, C. L. Tseng, S. C. Chien, “Adaptive fuzzy cerebellar model articulation control for switched reluctance motor drive,” IET Electric. Power Appl., vol. 6, no. 3, pp. 190–202, Mar. 2012.
[18] Y. N. Wang, T. Q. Ngo, T. L. Mai, C. Z. Wu, “Adaptive recurrent wavelet fuzzy CMAC tracking control for de-icing robot manipulator,” Proceedings of the World Congress on Engineering and Computer Science, vol. 1, pp. 372-379, 2012.
[19] C. M. Wen, M. Y. Cheng, “Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5105-5115, Nov. 2013.
[20] C. T. Chiang, C. S. Lin, “Integration of CMAC and radial basis function techniques,” IEEE Int. Conf. Intelligent Systems for the 21st Century, vol. 4, pp. 3263-3268, Oct. 1995.
[21] C. J. Lin, H. J. Chen, C. Y. Lee, “A self-organizing recurrent fuzzy CMAC model for dynamic system identification,” IEEE Proc. Fuzzy Sys., vol. 2, pp. 697-702, 2004.
[22] K. Ishaque, Z. Salam, M. Amjad, S. Mekhulef, “An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[23] Y. H. Yang and F. Blaabjerg, “A modified P&O MPPT algorithm for single phase PV systems based on deadbeat control,” in Proc. 6th IET Inter. Conf. Power Electronics, Machines and Drives, Mar. 2012.
[24] R. A. Mastromauro, M. Liserre, A. Dell’Aquila, “Control issues in single-stage photovoltaic systems: MPPT, current and voltage control,” IEEE Trans. Ind. Inform., vol. 8, no. 2, pp. 241-254, 2012.
[25] M. A. Gomes de Brito, L. Galotto, Jr. Leonardo Poltronieri Sampaio, C. A. Guilherme de Azevedo e Melo, Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1156-1166, March 2013.
[26] 黃仲欽,交流電動機控制,交流電動機課程講義,民國97年。
[27] N. Mohan, T. M. Undeland, W. P. Robbins, Power electronics, 1989.
[28] 使用手冊,可程控直流電源供應器(具太陽能電池陣列模擬) 62000H系列使用手冊,Chroma,2012。
[29] 使用手冊,太陽能電池陣列模擬虛擬儀控面板 62000H系列使用手冊,Chroma,2012年三月。
[30] 呂宗翰,智慧型控制雙饋式感應風力發電系統之研製,國立中央大學,碩士論文,2010年六月。
[31] User Manual, User’s Manual PCR-LE series, KIKUSUI, Feb. 2013.
[32] G. Saccomando, J. Svensson, and A. Sannino, “Improving voltage disturbance rejection for variable-speed wind turbines,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 422-428, Sep. 2002.
[33] A. Nicastri, A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” IEEE International Symposium on Industrial Electronics, pp. 3865-3870, 2010.
[34] C.H. Ng, L. Ran, J. Bumby, “Unbalance-Grid-Fault Ride-Through control for a Wind Turbine Inverter,” IEEE International on Industrial Applications, vol. 44, no. 3, pp. 845-856, May 2008.
[35] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[36] 柯廷翰,考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統,國立中央大學,碩士論文,2013年六月。
指導教授 林法正(Faa-jneg Lin) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明