博碩士論文 101521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.118.217.197
姓名 許顥騰(Hao-Teng Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以腦波為基礎之癱瘓病人溝通輔具技術開發
(Development of EEG-Based Communication Assistive Technology for Disable Patients)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多受到嚴重運動神經損傷的病患,如肌萎縮性脊髓側索硬化症(amyotrophic lateral sclerosis, ALS),、肌肉萎縮症(muscular dystrophies)、頭部創傷(head trauma)、多發性硬化症(multiple sclerosis),均難以按照自身意願與外界自由構通。這類病患急需要輔助器來維持他們的日常生活。在最近幾年中,許多研究團隊使用穩態視覺誘發電位(steady-state visual evoked potential, SSVEP)來發展大腦人機介面(brain computer interface, BCI)。穩態視覺誘發電位具有高時間解析度、低量測成本、高資料傳輸率(information transfer rate, ITR)以及可廣泛應用在每個人身上等諸多優點。在傳統上,穩態視覺誘發電位是透過量測使用者的枕葉部分所取得。然而,對於許多人來說,枕葉部位時常有毛髮覆蓋,導致在使用上有較不方便的電極設置以及有較長的穿戴時間。這些使用上的不便利,都會導致穩態視覺型之大腦人機介面系統難以普及應用,更難以適合運動腦區損傷患者使用。並且,穩態視覺誘發電位的相位特徵會有擾動特性,這使得在相位編碼(phase-tagged)穩態視覺型大腦人機介面在注視目標的分類上會有不確定性,導致錯誤率上升。因此,找出可便利設置的穩態視覺誘發電位量測方式與使用可適應性的分類器於相位判定是在穩態視覺誘發型之大腦人機介面設計中相當重要的議題。在本研究中,我們使用前額穩態視覺誘發電位來作為大腦人機介面的控制訊號,以達到輕鬆穿戴之目的。而因著枕葉穩態視覺誘發電位有著振幅-頻率響應特性(amplitude frequency characteristics),故前額穩態視覺誘發電位在使用上也需要考慮其振幅-頻率響應特性。為了能夠成功實現前額穩態視覺誘發之大腦人機介面,我們研究了年輕人、老年人以及肌萎縮性脊髓側索硬化症病患者的前額穩態視覺誘發電位之振幅-頻率響應特性,並且評估將其訊號作為大腦人機介面之控制訊號的可能性。在這三組受測者中,其平均準確率分別可達96.1 3.2、 91.8 4.2以及81.2 3.7 %。這研究成果顯示,前額穩態視覺誘發電位可成功作為大腦人機介面的控制訊號。為了進一步提升穩態視覺誘發電位之相位辨識,我們使用調適性類神經模糊分類器(adaptive neuron-fuzzy classifier, ANFC)來提高振幅與相位特徵的辨識準確度。在離線分析(off-line analysis)上,其傳統方法與調適性類神經模糊分類器分法的準確度分別為77.26 2.36 % 和95.11 0.90 %。而在即時大腦人機介面的操作上,其平均準確率可達91.7 4.9 %。其研究成果可看到調適性類神經模糊分類可有效提高相位特徵的準確度,並且可應用於上即時大腦人機介面之操作上。論文的研究成果可將穩態視覺誘發電位之大腦人機介面做更有效的落實與推廣,並且成為癱瘓病患有效的構通輔具。
摘要(英) Many motor impairment patients, such as amyotrophic lateral sclerosis (ALS), muscular dystrophies, head trauma, and multiple sclerosis, are incapable of communicating with external environments through their free wills. They are in an urgent need of an assistor to maintain their daily activities. In recent years, many research groups have utilized steady-state visual evoked potential (SSVEP), owing to its advantages of high temporal resolution, low cost, high information transfer rate (ITR) and wide suitability to users, to develop brain computer interface (BCI). Conventionally, in order to obtain SSVEP, the EEG signals from parietal-occipital area should be recorded. However, for most people, parietal-occipital area is usually covered with hair which lead to the unpleasant electrode gel setup and increase EEG preparation time. The inconvenient setups of SSVEP-based BCI system were difficulty to promote popularly and were not suitable for motor impairment patients. Moreover, the phase feature of SSVEPs has the characteristics of variations which lead to ambiguity in classifying different gaze targets in the phase-tagged SSVEP-based BCI. Therefore, an easy-preparation for SSVEP recording and a robust and adaptive classifier for phase identification are two crucial issues to develop a practical BCI system. In this dissertation, we utilized frontal SSVEP to implement BCI for achieving the easy-preparation purpose. Owing to the amplitude-frequency characteristics of occipital SSVEP, the amplitude-frequency characteristics of frontal SSVEP should be taken into account. In order to achieve a frontal frequency-coded SSVEP-based BCI, we studied the amplitude-frequency characteristic of frontal SSVEP in young, elderly, and ALS groups, and evaluated its possibility as control signals for BCI applications. The averaged accuracies in operating frontal SSVEP-based BCI in young, elderly, and ALS groups were 96.1 3.2, 91.8 4.2, and 81.2 3.7 %, respectively. The result of this dissertation has achieved the first frontal SSVEP-based BCI in the world. The frontal frequency-coded SSVEP could be an alternative choice to design SSVEP-based BCI. Regarding the robust and adaptive classifier for phase identification, we adopted adaptive neuron-fuzzy classifier (ANFC) to improve the identification of amplitude and phase features in gaze targets and non-gaze conditions. The averaged accuracy in traditional method (preset margin) and ANFC were 77.26 2.36 % and 95.11 0.90 %, respectively, in off-line analysis. In on-line BCI operating, the averaged accuracy in using ANFC was 91.7 4.9 %. The experimental results show that ANFC has ability to improve the accuracy of phase identification, and ANFC is suitable for implementing real-time BCI operating. The achievement provides an effective communication assistor for disable patients.
關鍵字(中) ★ 肌萎縮性脊髓側索硬化症
★ 大腦人機介面
★ 腦電波
★ 穩態視覺誘發電位
★ 前額穩態視覺誘發電位
★ 調適性類神經模糊分類器
關鍵字(英) ★ Amyotrophic lateral sclerosis (ALS)
★ brain computer interface (BCI)
★ electroencephalography (EEG)
★ steady-state visual evoked potential (SSVEP)
★ frontal SSVEP
★ adaptive neuron-fuzzy classifier (ANFC)
論文目次 摘要 ................................................................................................ I
Abstract ........................................................................................ II
誌謝.............................................................................................. IV
Contents ...................................................................................... V
List of Figures ............................................................................. VII
List of Tables ............................................................................... IX
List of Abbreviation ...................................................................... X
Chapter 1 Introduction ................................................................. 1
1.1 Background and Motivation ................................................... 1
1.2 Review of Previous Work ....................................................... 2
1.3 Objectives of Dissertation ..................................................... 4
1.4 Organization of Dissertation ................................................. 5
Chapter 2 SSVEP-Based Brain Computer Interface ..................... 7
2.1 Implement a Frontal Frequency-coded SSVEP-Based BCI System .......................................................................................... 7
2.1.1 Amplitude-Frequency Preference of Frontal SSVEP ......... 8
2.1.2 Frequency-coded Flickering Sequence ............................ 9
2.1.3 Epoch-Averaging Processing of SSVEP .......................... 11
2.2 Using ANFC in Phase-tagged SSVEP-Based BCI System ... 12
2.2.1 Phase-Tagged Flickering Sequence ............................... 15
2.2.2 The Architecture of Adaptive Neuron-Fuzzy Inference System ........................................................................................ 18
2.3 Performance Evaluation ..................................................... 20
Chapter 3 Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly, and ALS Groups ........................................................................................ 21
3.1 System Architecture of the Proposed Frontal SSVEP –Based BCI .............................................................................................. 21
3.2 Subjects and Tasks ............................................................. 23
3.3 Data Process ...................................................................... 26
3.3.1 Epoch-Average Processing ............................................ 26
3.3.2 Determination of Gaze Threshold and Averaging Interval for Gaze-Target Detection ......................................................... 28
3.3.3 Statistical Analysis ......................................................... 30
3.4 Results ................................................................................ 31
3.5 Discussion and Conclusion ................................................. 37

Chapter 4 Improvement of Classification Accuracy in a Phase-Tagged Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using Adaptive Neuron-Fuzzy Classifier ................................................................................................... 47
4.1 System Architecture of the Proposed Phase-Tagged SSVEP-Based BCI using Adaptive Neuron-Fuzzy Classifier ................... 47
4.2 Subjects and Tasks ............................................................ 48
4.3 Data Process ...................................................................... 50
4.3.1 Transformation of SSVEP Features into Cartesian Coordinates System ................................................................... 50
4.3.2 Classification of SSVEP Features using ANFC Classifier .................................................................................................... 52
4.3.3 Summary of Signal Flow ................................................ 53
4.4 Results and Discussion ...................................................... 55
4.5 Conclusion ......................................................................... 62
Chpater 5 Conclusion and Future Work .................................... 63
5.1 Conclusion .......................................................................... 63
5.2 Future Work ........................................................................ 64
Reference ................................................................................... 65
Publications ................................................................................ 73
參考文獻 Reference

[1] T. M. Vaughan, J. R. Wolpaw, and E. Donchin, "EEG-based communication: prospects and problems," IEEE transactions on rehabilitation engineering, vol. 4, no. 4, pp. 425-430, 1996.
[2] J. J. Vidal, "Toward direct brain-computer communication," Annual review of Biophysics and Bioengineering, vol. 2, no. 1, pp. 157-180, 1973.
[3] J. J. Vidal, "Real-time detection of brain events in EEG," Proceedings of the IEEE, vol. 65, no. 5, pp. 633-641, 1977.
[4] T. Hinterberger, N. Weiskopf, R. Veit, B. Wilhelm, E. Betta, and N. Birbaumer, "An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI)," IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 971-974, 2004.
[5] A. P. Georgopoulos, F. J. Langheim, A. C. Leuthold, and A. N. Merkle, "Magnetoencephalographic signals predict movement trajectory in space," Experimental brain research, vol. 167, no. 1, pp. 132-135, 2005.
[6] E. A. Curran and M. J. Stokes, "Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems," Brain and cognition, vol. 51, no. 3, pp. 326-336, 2003.
[7] N. Weiskopf, K. Mathiak, S. W. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel, and N. Birbaumer, "Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)," IEEE transactions on biomedical engineering, vol. 51, no. 6, pp. 966-970, 2004.
[8] C.-H. Chen, M.-S. Ho, K.-K. Shyu, K.-C. Hsu, K.-W. Wang, and P.-L. Lee, "A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses," Neuroscience letters, vol. 580, pp. 22-26, 2014.
[9] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, "Emotion assessment from physiological signals for adaptation of game difficulty," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41, no. 6, pp. 1052-1063, 2011.
[10] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. Mcdarby, "Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment," EURASIP Journal on Advances in Signal Processing, vol. 2005, no. 19, p. 706906, 2005.
[11] P. Martinez, H. Bakardjian, and A. Cichocki, "Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm," Computational intelligence and neuroscience, vol. 2007, 2007.
[12] R. E. Isaacs, D. Weber, and A. B. Schwartz, "Work toward real-time control of a cortical neural prothesis," IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 196-198, 2000.
[13] G. R. Müller-Putz, E. Eder, S. C. Wriessnegger, and G. Pfurtscheller, "Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI," Journal of neuroscience methods, vol. 168, no. 1, pp. 174-181, 2008.
[14] R. Heliot, A. L. Orsborn, K. Ganguly, and J. M. Carmena, "System architecture for stiffness control in brain–machine interfaces," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 4, pp. 732-742, 2010.
[15] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain–computer interfaces for communication and control," Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[16] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, "A spelling device for the paralysed," Nature, vol. 398, no. 6725, p. 297, 1999.
[17] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, "The thought translation device (TTD) for completely paralyzed patients," IEEE Transactions on rehabilitation Engineering, vol. 8, no. 2, pp. 190-193, 2000.
[18] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier, and M. Pregenzer, "Current trends in Graz brain-computer interface (BCI) research," IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 216-219, 2000.
[19] S. G. Mason and G. E. Birch, "A brain-controlled switch for asynchronous control applications," IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1297-1307, 2000.
[20] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio, "The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects," NeuroImage, vol. 37, no. 2, pp. 539-550, 2007.
[21] G. R. Muller-Putz, R. Scherer, C. Neuper, and G. Pfurtscheller, "Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces?," IEEE transactions on neural systems and rehabilitation engineering, vol. 14, no. 1, pp. 30-37, 2006.
[22] E. Donchin, K. M. Spencer, and R. Wijesinghe, "The mental prosthesis: assessing the speed of a P300-based brain-computer interface," IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 174-179, 2000.
[23] P. Meinicke, M. Kaper, F. Hoppe, M. Heumann, and H. Ritter, "Improving transfer rates in brain computer interfacing: a case study," in Advances in Neural Information Processing Systems, 2003, pp. 1131-1138.
[24] P.-L. Lee, C.-H. Wu, J.-C. Hsieh, and Y.-T. Wu, "Visual evoked potential actuated brain computer interface: a brain-actuated cursor system," Electronics letters, vol. 41, no. 15, pp. 832-834, 2005.
[25] P.-L. Lee, J.-C. Hsieh, C.-H. Wu, K.-K. Shyu, and Y.-T. Wu, "Brain computer interface using flash onset and offset visual evoked potentials," Clinical Neurophysiology, vol. 119, no. 3, pp. 605-616, 2008.
[26] P.-L. Lee, J.-C. Hsieh, C.-H. Wu, K.-K. Shyu, S.-S. Chen, T.-C. Yeh, and Y.-T. Wu, "The brain computer interface using flash visual evoked potential and independent component analysis," Annals of biomedical engineering, vol. 34, no. 10, pp. 1641-1654, 2006.
[27] M. Cheng, X. Gao, S. Gao, and D. Xu, "Design and implementation of a brain-computer interface with high transfer rates," IEEE transactions on biomedical engineering, vol. 49, no. 10, pp. 1181-1186, 2002.
[28] S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, "Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 172-178, 2005.
[29] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, "Brain-computer interfaces based on the steady-state visual-evoked response," IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 211-214, 2000.
[30] L. J. Trejo, R. Rosipal, and B. Matthews, "Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials," IEEE transactions on neural systems and rehabilitation engineering, vol. 14, no. 2, pp. 225-229, 2006.
[31] P.-L. Lee, H.-C. Chang, T.-Y. Hsieh, H.-T. Deng, and C.-W. Sun, "A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 42, no. 5, pp. 1053-1064, 2012.
[32] H.-C. Chang, P.-L. Lee, M.-T. Lo, I.-H. Lee, T.-K. Yeh, and C.-Y. Chang, "Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 3, pp. 305-312, 2012.
[33] H.-Y. Wu, P.-L. Lee, H.-C. Chang, and J.-C. Hsieh, "Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation," IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1394-1402, 2011.
[34] C.-H. Wu, H.-C. Chang, P.-L. Lee, K.-S. Li, J.-J. Sie, C.-W. Sun, C.-Y. Yang, P.-H. Li, H.-T. Deng, and K.-K. Shyu, "Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing," Journal of neuroscience methods, vol. 196, no. 1, pp. 170-181, 2011.
[35] C.-L. Yeh, P.-L. Lee, W.-M. Chen, C.-Y. Chang, Y.-T. Wu, and G.-Y. Lan, "Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine," Biomedical engineering online, vol. 12, no. 1, p. 46, 2013.
[36] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, "A practical VEP-based brain-computer interface," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 234-240, 2006.
[37] X. Gao, D. Xu, M. Cheng, and S. Gao, "A BCI-based environmental controller for the motion-disabled," IEEE Transactions on neural systems and rehabilitation engineering, vol. 11, no. 2, pp. 137-140, 2003.
[38] P.-L. Lee, J.-J. Sie, Y.-J. Liu, C.-H. Wu, M.-H. Lee, C.-H. Shu, P.-H. Li, C.-W. Sun, and K.-K. Shyu, "An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system," Annals of biomedical engineering, vol. 38, no. 7, pp. 2383-2397, 2010.
[39] C. Jia, X. Gao, B. Hong, and S. Gao, "Frequency and phase mixed coding in SSVEP-based brain--computer interface," IEEE Transactions on Biomedical Engineering, vol. 58, no. 1, pp. 200-206, 2011.
[40] V. Mihajlovic, G. Garcia Molina, and J. Peuscher, "To what extent can dry and water-based EEG electrodes replace conductive gel ones?: A steady state visual evoked potential brain-computer interface case study," in ICBE 2011: International Conference on Biomedical Engineering, Venice, Italy, 2011, 2011: Springer.
[41] C. Guger, G. Krausz, B. Z. Allison, and G. Edlinger, "Comparison of dry and gel based electrodes for P300 brain–computer interfaces," Frontiers in neuroscience, vol. 6, p. 60, 2012.
[42] D. Zhu, G. G. Molina, V. Mihajlović, and R. M. Aarts, "Phase synchrony analysis for SSVEP-based BCIs," in Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, 2010, vol. 2, pp. V2-329-V2-333: IEEE.
[43] S. Morgan, J. Hansen, and S. Hillyard, "Selective attention to stimulus location modulates the steady-state visual evoked potential," Proceedings of the National Academy of Sciences, vol. 93, no. 10, pp. 4770-4774, 1996.
[44] R. B. Silberstein and A. Pipingas, "Steady-state visually evoked potential topography during the Wisconsin card sorting test," Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 96, no. 1, pp. 24-35, 1995.
[45] J. C. Thompson, K. Tzambazis, C. Stough, K. Nagata, and R. B. Silberstein, "The effects of nicotine on the 13 Hz steady-state visually evoked potential," Clinical neurophysiology, vol. 111, no. 9, pp. 1589-1595, 2000.
[46] H. Bakardjian, T. Tanaka, and A. Cichocki, "Emotional faces boost up steady-state visual responsesforbrain–computer interface," Neuroreport, vol. 22, no. 3, pp. 121-125, 2011.
[47] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris, and F. Danieli, "Steady state visually evoked potential (SSVEP) topography in a graded working memory task," International Journal of Psychophysiology, vol. 42, no. 2, pp. 219-232, 2001.
[48] M. Gray, A. Kemp, R. Silberstein, and P. Nathan, "Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT)," Neuroimage, vol. 20, no. 2, pp. 975-986, 2003.
[49] K.-K. Shyu, P.-L. Lee, Y.-J. Liu, and J.-J. Sie, "Dual-frequency steady-state visual evoked potential for brain computer interface," Neuroscience letters, vol. 483, no. 1, pp. 28-31, 2010.
[50] H.-T. Hsu, I.-H. Lee, H.-T. Tsai, H.-C. Chang, K.-K. Shyu, C.-C. Hsu, H.-H. Chang, T.-K. Yeh, C.-Y. Chang, and P.-L. Lee, "Evaluate the feasibility of using frontal SSVEP to implement an SSVEP-based BCI in young, elderly and ALS groups," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 5, pp. 603-615, 2016.
[51] I. Volosyak, D. Valbuena, T. Malechka, J. Peuscher, and A. Gräser, "Brain–computer interface using water-based electrodes," Journal of neural engineering, vol. 7, no. 6, p. 066007, 2010.
[52] C. Quigley, S. K. Andersen, L. Schulze, M. Grunwald, and M. M. Müller, "Feature-selective attention: evidence for a decline in old age," Neuroscience letters, vol. 474, no. 1, pp. 5-8, 2010.
[53] H. Macpherson, A. Pipingas, and R. Silberstein, "A steady state visually evoked potential investigation of memory and ageing," Brain and cognition, vol. 69, no. 3, pp. 571-579, 2009.
[54] W. M. Perlstein, M. A. Cole, M. Larson, K. Kelly, P. Seignourel, and A. Keil, "Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans," Neuroscience letters, vol. 342, no. 3, pp. 191-195, 2003.
[55] R. B. Silberstein, P. G. Harris, G. A. Nield, and A. Pipingas, "Frontal steady-state potential changes predict long-term recognition memory performance," International Journal of Psychophysiology, vol. 39, no. 1, pp. 79-85, 2000.
[56] H. Bakardjian, T. Tanaka, and A. Cichocki, "Optimization of SSVEP brain responses with application to eight-command Brain–Computer Interface," Neuroscience letters, vol. 469, no. 1, pp. 34-38, 2010.
[57] C. S. Herrmann, "Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Experimental brain research, vol. 137, no. 3-4, pp. 346-353, 2001.
[58] I. Volosyak, D. Valbuena, T. Luth, T. Malechka, and A. Graser, "BCI demographics II: How many (and what kinds of) people can use a high-frequency SSVEP BCI?," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 3, pp. 232-239, 2011.
[59] F. Crick and C. Koch, "Are we aware of neural activity in primary visual cortex?," Nature, vol. 375, no. 6527, pp. 121-123, 1995.
[60] P.-L. Lee, Y.-T. Wu, L.-F. Chen, Y.-S. Chen, C.-M. Cheng, T.-C. Yeh, L.-T. Ho, M.-S. Chang, and J.-C. Hsieh, "ICA-based spatiotemporal approach for single-trial analysis of postmovement MEG beta synchronization☆," Neuroimage, vol. 20, no. 4, pp. 2010-2030, 2003.
[61] Z. Lin, C. Zhang, W. Wu, and X. Gao, "Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs," IEEE transactions on biomedical engineering, vol. 54, no. 6, pp. 1172-1176, 2007.
[62] Y. Zhang, L. Dong, R. Zhang, D. Yao, Y. Zhang, and P. Xu, "An efficient frequency recognition method based on likelihood ratio test for SSVEP-based BCI," Computational and mathematical methods in medicine, vol. 2014, 2014.
[63] Y. Zhang, J. Jin, X. Qing, B. Wang, and X. Wang, "LASSO based stimulus frequency recognition model for SSVEP BCIs," Biomedical Signal Processing and Control, vol. 7, no. 2, pp. 104-111, 2012.
[64] K.-K. Shyu, P.-L. Lee, M.-H. Lee, M.-H. Lin, R.-J. Lai, and Y.-J. Chiu, "Development of a low-cost FPGA-based SSVEP BCI multimedia control system," IEEE Transactions on biomedical circuits and systems, vol. 4, no. 2, pp. 125-132, 2010.
[65] O. Falzon, K. Camilleri, and J. Muscat, "Complex-valued spatial filters for SSVEP-based BCIs with phase coding," IEEE Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2486-2495, 2012.
[66] T. Kayikcioglu and O. Aydemir, "A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data," Pattern Recognition Letters, vol. 31, no. 11, pp. 1207-1215, 2010.
[67] G. Pfurtscheller, J. Kalcher, C. Neuper, D. Flotzinger, and M. Pregenzer, "On-line EEG classification during externally-paced hand movements using a neural network-based classifier," Clinical neurophysiology, vol. 99, no. 5, pp. 416-425, 1996.
[68] F. Lotte, "The use of fuzzy inference systems for classification in EEG-based brain-computer interfaces," in 3rd International Brain-Computer Interfaces Workshop and Training Course, 2006.
[69] I. Güler and E. D. Übeyli, "Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients," Journal of neuroscience methods, vol. 148, no. 2, pp. 113-121, 2005.
[70] W.-Y. Hsu, "Motor Imagery Electroencephalogram Analysis Using Adaptive Neural-Fuzzy Classification," International Journal of Fuzzy Systems, vol. 16, no. 1, 2014.
[71] D. Begum, K. Ravikumar, J. Mathew, S. Kubakaddi, and R. Yadav, "EEG based patient monitoring system for mental alertness using adaptive neuro-fuzzy approach," J. Med. Bioeng, vol. 4, no. 1, 2015.
[72] S. Bhattacharyya, D. Basu, A. Konar, and D. Tibarewala, "Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm," Robotics and Autonomous Systems, vol. 68, pp. 104-115, 2015.
[73] M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning," Neural networks, vol. 6, no. 4, pp. 525-533, 1993.
[74] Y.-T. Wang, Y. Wang, C.-K. Cheng, and T.-P. Jung, "Measuring steady-state visual evoked potentials from non-hair-bearing areas," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 1806-1809: IEEE.
[75] J. M. Cedarbaum, N. Stambler, E. Malta, C. Fuller, D. Hilt, B. Thurmond, A. Nakanishi, B. A. S. Group, and A. c. l. o. t. B. S. Group, "The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function," Journal of the neurological sciences, vol. 169, no. 1-2, pp. 13-21, 1999.
[76] R. Spehlmann, Evoked potential primer: Visual, auditory, and somatosensory evoked potentials in clinical diagnosis. Butterworth-Heinemann, 1985.
[77] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, "EEG-based communication: improved accuracy by response verification," IEEE transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 326-333, 1998.
[78] R. Srinivasan, E. Fornari, M. G. Knyazeva, R. Meuli, and P. Maeder, "fMRI responses in medial frontal cortex that depend on the temporal frequency of visual input," Experimental brain research, vol. 180, no. 4, pp. 677-691, 2007.
[79] M. J. Mentis, G. E. Alexander, C. L. Grady, B. Horwitz, J. Krasuski, P. Pietrini, T. Strassburger, H. Hampel, M. B. Schapiro, and S. I. Rapoport, "Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex," Neuroimage, vol. 5, no. 2, pp. 116-128, 1997.
[80] S. G. Thorpe, P. L. Nunez, and R. Srinivasan, "Identification of wave‐like spatial structure in the SSVEP: Comparison of simultaneous EEG and MEG," Statistics in medicine, vol. 26, no. 21, pp. 3911-3926, 2007.
[81] F.-B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, "Steady-state visually evoked potentials: focus on essential paradigms and future perspectives," Progress in neurobiology, vol. 90, no. 4, pp. 418-438, 2010.
[82] M. M. Müller and S. Hillyard, "Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention," Clinical Neurophysiology, vol. 111, no. 9, pp. 1544-1552, 2000.
[83] Y. Zhang, P. Xu, D. Guo, and D. Yao, "Prediction of SSVEP-based BCI performance by the resting-state EEG network," Journal of neural engineering, vol. 10, no. 6, p. 066017, 2013.
[84] J. J. Wilson and R. Palaniappan, "Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain–computer interface," Journal of neural engineering, vol. 8, no. 2, p. 025026, 2011.
[85] A. H. Kemp, M. A. Gray, R. B. Silberstein, S. M. Armstrong, and P. J. Nathan, "Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans," Neuroimage, vol. 22, no. 3, pp. 1084-1096, 2004.
[86] J. J. Foxe, G. V. Simpson, and S. P. Ahlfors, "Parieto‐occipital∼ 1 0Hz activity reflects anticipatory state of visual attention mechanisms," Neuroreport, vol. 9, no. 17, pp. 3929-3933, 1998.
[87] M. S. Worden, J. J. Foxe, N. Wang, and G. V. Simpson, "Anticipatory biasing of visuospatial attention indexed by retinotopically specific-band electroencephalography increases over occipital cortex," J Neurosci, vol. 20, no. RC63, pp. 1-6, 2000.
[88] A. Birca, L. Carmant, A. Lortie, P. Vannasing, H. Sauerwein, M. Robert, L. Lemay, X.-P. Wang, D. Piper, and V. Donici, "Maturational changes of 5 Hz SSVEPs elicited by intermittent photic stimulation," International Journal of Psychophysiology, vol. 78, no. 3, pp. 295-298, 2010.
[89] H. Tomoda, G. G. Celesia, M. G. Brigell, and S. Toleikis, "The effects of age on steady-state pattern electroretinograms and visual evoked potentials," Documenta ophthalmologica, vol. 77, no. 3, pp. 201-211, 1991.
[90] V. Porciatti, D. C. Burr, M. C. Morrone, and A. Fiorentini, "The effects of ageing on the pattern electroretinogram and visual evoked potential in humans," Vision Research, vol. 32, no. 7, pp. 1199-1209, 1992.
[91] B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, and M. Schaumberger, "The different effects of aging on normal sensitivity in flicker and light-sense perimetry," Investigative ophthalmology & visual science, vol. 35, no. 6, pp. 2741-2748, 1994.
[92] H.-Y. Kuo, G. C. Chiu, J. K. Zao, K.-L. Lai, A. Gruber, Y.-Y. Chien, C.-C. Chou, C.-K. Lu, W.-H. Liu, and Y.-S. Huang, "Habituation of steady-state visual evoked potentials in response to high-frequency polychromatic foveal visual stimulation," in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 803-806: IEEE.
[93] H. N. Macpherson, D. J. White, K. A. Ellis, C. Stough, D. Camfield, R. Silberstein, and A. Pipingas, "Age-related changes to the neural correlates of working memory which emerge after midlife," Frontiers in aging neuroscience, vol. 6, p. 70, 2014.
[94] B. Z. Allison and C. Neuper, "Could anyone use a BCI?," in Brain-computer interfaces: Springer, 2010, pp. 35-54.
[95] K. Goel, R. Vohra, A. Kamath, and V. Baths, "Home automation using SSVEP & eye-blink detection based brain-computer interface," in Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on, 2014, pp. 4035-4036: IEEE.
[96] J. Fernandez-Vargas, H. U. Pfaff, F. B. Rodríguez, and P. Varona, "Assisted closed-loop optimization of SSVEP-BCI efficiency," Frontiers in neural circuits, vol. 7, p. 27, 2013.
[97] J. Phukan, N. P. Pender, and O. Hardiman, "Cognitive impairment in amyotrophic lateral sclerosis," The Lancet Neurology, vol. 6, no. 11, pp. 994-1003, 2007.
[98] J. Ding, G. Sperling, and R. Srinivasan, "Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency," Cerebral cortex, vol. 16, no. 7, pp. 1016-1029, 2005.
[99] P. Cipresso, L. Carelli, F. Solca, D. Meazzi, P. Meriggi, B. Poletti, D. Lulé, A. C. Ludolph, V. Silani, and G. Riva, "The use of P300‐based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment," Brain and behavior, vol. 2, no. 4, pp. 479-498, 2012.
[100] A. Girardi, S. E. MacPherson, and S. Abrahams, "Deficits in emotional and social cognition in amyotrophic lateral sclerosis," Neuropsychology, vol. 25, no. 1, p. 53, 2011.
[101] H.-T. Hsu, P.-L. Lee, and K.-K. Shyu, "Improvement of Classification Accuracy in a Phase-Tagged Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using Adaptive Neuron-Fuzzy Classifier," International Journal of Fuzzy Systems, vol. 19, no. 2, pp. 542-552, 2017.
[102] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[103] V. Asadpour, M. R. Ravanfar, and R. Fazel-Rezai, "Adaptive network fuzzy inference systems for classification in a brain computer interface," in Brain-Computer Interface Systems-Recent Progress and Future Prospects: InTech, 2013.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2018-4-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明