博碩士論文 101521101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:34.225.194.144
姓名 楊維軒(Wei-Hsuan Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於邏輯與動態隨機存取記憶體堆疊式三維積體電路之堆疊後測試與良率提升方法
(Post-Bond Test and Yield-Enhancement Techniques for Logic-DRAM Stacked ICs)
相關論文
★ 應用於三元內容定址記憶體之低功率設計與測試技術★ 用於隨機存取記憶體的接線驗證演算法
★ 用於降低系統晶片內測試資料之基礎矽智產★ 內容定址記憶體之鄰近區域樣型敏感瑕疵測試演算法
★ 內嵌式記憶體中位址及資料匯流排之串音瑕疵測試★ 用於系統晶片中單埠與多埠記憶體之自我修復技術
★ 用於修復嵌入式記憶體之基礎矽智產★ 自我修復記憶體之備份分析評估與驗證平台
★ 使用雙倍疊乘累加命中線之低功率三元內容定址記憶體設計★ 可自我測試且具成本效益之記憶體式快速傅利葉轉換處理器設計
★ 低功率與可自我修復之三元內容定址記憶體設計★ 多核心系統晶片之診斷方法
★ 應用於網路晶片上隨機存取記憶體測試及修復之基礎矽智產★ 應用於貪睡靜態記憶體之有效診斷與修復技術
★ 應用於內嵌式記憶體之高效率診斷性資料壓縮與可測性方案★ 應用於隨機存取記憶體之有效良率及可靠度提升技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-8-26以後開放)
摘要(中) 使用矽穿孔(through silicon via)的三維整合技術是目前被大家公認的積體電路設計技術之一。為了克服記憶體不足,邏輯與動態隨機存取記憶體(DRAM)堆疊式三維整合晶片是一種有效的方法。由於邏輯與動態隨機存取記憶體可能來自不同的製造商,對一個堆疊式三維整合者有效的測試與診斷矽穿孔是很重要的。此外,堆疊過程可能最造成瑕疵(defect)散落。堆疊後的良率提升也是很需要的。

在本論文的第一部分,我們提出應用於邏輯與動態隨機存取記憶體(DRAM)堆疊式可程式化內建自我測試電路(built-in self-test )。內建自我測試電路產生控制訊號給動態隨機存取記憶體中的類1149.1邊界掃描(boundary scan),還有產生測試樣型(test pattern)去涵蓋(cover)邏輯與動態隨機存取記憶體間矽穿孔的永駐錯誤(stuck-at fault)與開路錯誤(open fault)。我們也提出一個診斷出永駐錯誤與開路錯誤位置的演算法。除此之外,自我測試電路可以產生測試樣品經由邏輯的邊界掃描給動態隨機存取記憶體。對於一個四通道512位元寬輸入輸出動態隨機存取記憶體(wide I/O DRAM),我們的測試和診斷演算法需要4754個時脈週期數。自我測試電路使用TSMC 90nm製程實現的面積為7359.4um2。

在本論文的第二部分,我們提出一個內建自我修復方法(BISR)來提升三維動態隨機存取記憶體,其中利用了通道間冗餘互相修復方法(inter-channel redundancy),此方法可以提升了冗餘利用率。我們也提出內建冗餘分析(BIRA)演算法來分配冗餘到通道間。模擬實驗可以看出在平均值為6時,我們提出的分法相較於傳統方法提升了20.3%的修復率(repair rate)。對一個32G位元的動態隨機存取記憶體,自我修復電路使用TSMC 90nm製程實現的面積為47880um2。

摘要(英) Three-dimensional (3D) integration technology using through-silicon via (TSV) has been acknowledged as one integrated circuit (IC) design technology. Logic and dynamic random access memory(DRAM) stacked 3D IC is considered as one effective approach for overcoming memory wall.

Since logic and DRAM dies may come from different sources, effective test and diagnosis method for TSVs are imperative for the 3D IC integrator. Furthermore, the stacking process may induce defects. Post-bond yield-enhancement techniques for DRAM stacks are needed.

In the first part of this thesis, we propose a programmable built-in self-test (BIST) scheme for logic and DRAM stacked 3D ICs. The BIST can generate control signals for the 1149.1-like bboundary scan in the DRAMdies and test patterns for covering the stuck-at and open faults of TSVs between the DRAM dies and the logic die. Also, a diagnosis test algorithm is proposed to locate the positions of stuck-at and open faults. Furthermore, the BIST can generate the test patterns for

DRAM dies through the boundary scan in the logic die. The test and diagnosis algorithm needs 4754 clock cycles to locate faults for a four channel 512-bit datawidth wide I/O DRAM. The area of the BIST is only 7359.4 um2 using TSMC 90nm CMOS standard cell library.

In the second part of this thesis, a post-bond built-in self-repair (BISR) scheme is proposed to enhance the yield of 3D DRAMs by using inter-channel redundancy. The inter-channel redundancy can increase the utilization of redundancies. Built-in redundancy analysis (BIRA) algorithms are also proposed to allocate the inter-die redundancy. Simulation results show that the proposed interchannel redundancy scheme can achieve 20.3% increment of repair rate at most than a typical

redundancy word architecture when the mean value is 6. The area of BISR is 47880 um2 using TSMC 90nm CMOS standard cell library for a 32G-bit DRAM.
關鍵字(中) ★ 三維積體電路
★ 堆疊後測試
★ 良率提升方法
關鍵字(英) ★ 3D IC
★ Post-Bond test
★ Yield-Enhancement
論文目次 1 Introduction 1

1.1 3D Integration Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 3D Dynamic Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Wide I/O DRAM Boundary Scan . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Test for 3D ICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Defects and Fault models in TSVs and micro-bumps . . . . . . . . . . . . 8

1.3.2 Existing Test Techniques of 3D ICs . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Test and Yield Enhancement Techniques for 3D DRAMs . . . . . . . . . . 12

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 A BIST scheme for Testing and Diagnosing TSVs of Logic-DRAM Stacks 15

2.1 Logic Die Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Enhance Address Boundary Scan Register . . . . . . . . . . . . . . . . . . 21

2.3.2 Enhance DQ Boundary Scan Register . . . . . . . . . . . . . . . . . . . . 22

2.4 TSV Test and Diagnosis Methodology . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Proposed BIST Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Simulation and Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Post-Bond BISR of 3D DRAMs Using Globally Inter-Channel Redundancy 36

3.1 Proposed Yield-Enhancement Technique . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Redundancy Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 BISR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 The Inter-channel Redundancy Architecture . . . . . . . . . . . . . . . . . 44

3.1.4 Built-In Redundancy Analysis Algorithm . . . . . . . . . . . . . . . . . . 46

3.2 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Shared Spare Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Enhance Shared Spare Memory . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Conclusions and Future Work 59

參考文獻 [1] Provisional Report of the IEEE P1838 Defect tiger team, “3D-IC defect investigation.” July. 2012.

[2] S. Deutsch, B. Keller, V. Chickermane, S. Mukherjee, N. Sood, S. Goel, J. Chen, A. Mehta, F. Lee,

and E. Marinissen, “DfT architecture and ATPG for interconnect tests of JEDEC Wide-I/O memoryon-

logic die stacks,” in Proc. Int’l Test Conf. (ITC), Nov 2012, pp. 1–10.

[3] E. Marinissen, C.-C. Chi, J. Verbree, and M. Konijnenburg, “A DfT architecture for 3D-SICs based on

a standardizable die wrapper,” in Jour. of Electronic Testing: Theory and Applications, Feb 2012, pp.

73–92.

[4] M. Taouil, M. Masadeh, S. Hamdioui, and E. Marinissen, “Interconnect test for 3D stacked memoryon-

logic,” in Proc. Conf. Design, Automation, and Test in Europe (DATE), March 2014, pp. 1–6.

[5] E. Marinissen, C.-C. Chi, J. Verbree, and M. Konijnenburg, “3D DfT architecture for pre-bond and

post-bond testing,” in IEEE International 3D Systems Integration Conference (3DIC), Nov 2010, pp.

1–8.

[6] A. Ohba, S. Ohbayashi, T. Shiomi, S. Takano, K. Anami, H. Honda, Y. Ishigaki, M. Hatanaka, S. Nagao,

and S. Kayano, “A 7 ns 1 mb BiCMOS ECL sramwith shift redundancy,” IEEE Jour. of Solid-State

Circuits, vol. 26, no. 4, pp. 507–512, Apr 1991.

[7] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using redundant words,” in Proc. Int’l

Test Conf. (ITC), 2001, pp. 995–1001.

[8] Y.-J. Huang and J.-F. Li, “Low-cost self-test techniques for small RAMs in SOCs using enhanced

IEEE 1500 test wrappers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,

no. 11, pp. 2123–2127, Nov 2012.

[9] Y.-J. Huang, Y.-C. You, and J.-F. Li, “Enhanced IEEE 1500 test wrapper for testing small rams in

SOCs,” in IEEE International SOC Conference (SOCC), Sept 2010, pp. 236–240.

[10] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design space exploration for 3D architecture,” ACM

Journal on Emerging Technologies in Computing Systems, vol. 2, no. 2, pp. 65–103, Apr. 2006.

[11] J.-Q. Lu, “3-D hyperintegration and packaging technologies for micronano systems,” Proceedings of

the IEEE, vol. 97, no. 1, pp. 18–30, Jan. 2009.

[12] M. Motoyoshi, “Through-silicon via (TSV),” Proceedings of the IEEE, vol. 97, no. 1, pp. 43–48, Jan.

2009.

[13] JEDEC, “JEDEC wide I/O single data rate,” http://www.jedec.org/, Dec. 2011.

[14] ——, “JEDEC high bandwidth memory (HBM) DRAM,” Oct. 2013.

[15] Hybird memory cube consortium, “HMC specification 1.0,” Jan. 2013.

[16] A. Osseiran, “Test standards (with focus on IEEE1149.1),” in Proceedings of the 38th Midwest Symposium

on Circuits and Systems, vol. 2, Aug 1995, pp. 708–711 vol.2.

[17] “IEEE standard testability method for embedded core-based integrated circuits,” IEEE Std 1500-2005,

pp. 1–117, 2005.

[18] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault modeling and simulation for crosstalk in systemon-

chip interconnects,” in IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

Nov 1999, pp. 297–303.

[19] A.-C. Hsieh and T. Hwang, “TSV redundancy: architecture and design issues in 3-D IC,” IEEE Trans.

on Reliability, vol. 20, no. 4, pp. 711–722, April 2012.

[20] J. Rajski and J. Tyszer, “Fault diagnosis of TSV-based interconnects in 3-D stacked designs,” in Proc.

Int’l Test Conf. (ITC), Sept 2013, pp. 1–9.

[21] C.-C. Chi, C.-W. Wu, M.-J. Wang, and H.-C. Lin, “3D-IC interconnect test, diagnosis, and repair,” in

Proc. IEEE VLSI Test Symp. (VTS), April 2013, pp. 1–6.

[22] Y.-J. Huang, J.-F. Li, J.-J. Chen, D.-M. Kwai, Y.-F. Chou, and C.-W. Wu, “A built-in self-test scheme

for the post-bond test of TSVs in 3D ICs,” in Proc. IEEE VLSI Test Symp. (VTS),May 2011, pp. 20–25.

[23] V. Pasca, L. Anghel, and M. Benabdenbi, “Configurable thru-silicon-via interconnect built-in self-test

and diagnosis,” in Latin American Test Workshop (LATW), March 2011, pp. 1–6.

[24] C.-W. Chou, Y.-J. Huang, and J.-F. Li, “A built-in self-repair scheme for 3-D RAMs with interdie

redundancy,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,

no. 4, pp. 572–583, April 2013.

[25] ——, “Yield-enhancement techniques for 3D random access memories,” in International Symposium

on VLSI Design Automation and Test (VLSI-DAT), April 2010, pp. 104–107.

[26] L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3d-stacked memory by redundancy sharing across

dies,” in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), Nov 2010, pp. 230–234.

[27] B.-Y. Lin et al., “Redundancy aritectures for channel-based 3D DRAM yield improvement,” in Proc.

Int’l Test Conf. (ITC), 2014, pp. 1–7.

[28] D. Niggemeyer, M. Redeker, and J. Otterstedt, “Integration of non-classical faults in standard march

tests,” in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), Aug 1998,

pp. 91–96.

[29] E. Marinissen, J. Verbree, and M. Konijnenburg, “A structured and scalable test access architecture for

TSV-based 3D stacked ICs,” in Proc. IEEE VLSI Test Symp. (VTS), April 2010, pp. 269–274.

[30] Y.-J. Huang, J.-F. Li, and C.-W. Chou, “Post-bond test techniques for TSVs with crosstalk faults in 3D

ICs,” in Proc. Conf. Design, Automation, and Test in Europe (DATE), April 2012, pp. 1–4.

[31] P.Wanger., “Interconnect testing with boundary scan,” in Proc. Int’l Test Conf. (ITC), 1987, pp. 52–57.

[32] E. Marinissen, B. Vermeulen, H. Hollmann, and R. Bennetts, “Minimizing pattern count for interconnect

test under a ground bounce constraint,” IEEE Design & Test of Computers, vol. 20, no. 2, pp.

8–18, Mar 2003.

[33] T.-W. Tseng, J.-F. Li, and C.-C. Hsu, “ReBISR: a reconfigurable built-in self-repair scheme for random

access memories in SOCs,” IEEE Trans. on VLSI Systems, vol. 18, no. 6, pp. 921–932, June 2010.

[34] C.-C. Yang, J.-F. Li, Y.-C. Yu, K.-T. Wu, C.-Y. Lo, C.-H. Chen, J.-S. Lai, D.-M. Kwai, and Y.-F.

Chou, “A hybrid built-in self-test scheme for DRAMs,” in International Symposium on VLSI Design,

Automation and Test (VLSI-DAT), April 2015, pp. 1–4.

[35] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, “A simulator for evaluating redundancy analysis algorithms

of repairable embedded memories,” in Proc. IEEE Int’l Workshop on Memory Technology,

Design and Testing (MTDT), 2002, pp. 68–73.

[36] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in redundancy analysis for memory yield improvement,”

IEEE Trans. on Reliability, vol. 52, no. 4, pp. 386–399, Dec. 2003.

[37] L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3D-stacked memory by redundancy sharing across

dies,” in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), Nov 2010, pp. 230–234.

[38] M. Taouil and S. Hamdioui, “Layer redundancy based yield improvement for 3D wafer-to-wafer

stacked memories,” in IEEE European Test Symposium (ETS), May 2011, pp. 45–50.

[39] C.-C. Chi, Y.-F. Chou, D.-M. Kwai, Y.-Y. Hsiao, C.-W. Wu, Y.-T. Hsing, L.-M. Denq, and T.-H.

Lin, “3D-IC BISR for stacked memories using cross-die spares,” in International Symposium on VLSI

Design, Automation, and Test (VLSI-DAT), April 2012, pp. 1–4.

[40] X.Wang, D. Vasudevan, and H.-H. Lee, “Global built-in self-repair for 3D memories with redundancy

sharing and parallel testing,” in IEEE International 3D Systems Integration Conference (3DIC), Jan

2012, pp. 1–8.

[41] B. Lin, W. Chiang, C. Wu, M. Lee, H. Lin, C. Peng, and M. Wang, “Configurable cubical redundancy

schemes for channel-based 3D DRAMyield improvement,” Proc. Int’l Test Conf. (ITC), vol. PP, no. 99,

pp. 1–1, 2015.

[42] W. Kang, C. Lee, K. Cho, and S. Kang, “A die selection and matching method with two stages for yield

enhancement of 3-D memories,” in Test Symposium (ATS), 2013 22nd Asian, Nov 2013, pp. 301–306.
指導教授 李進福(Jin-Fu Lin) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明