博碩士論文 101521127 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.230.142.168
姓名 周城旭(Cheng-Syu Jhou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 CMOS製程相容之複晶矽鍺微致冷元件製作與特性探討
(Fabrication and Characterization of CMOS Compatible Poly-Si/SiGe Thermoelectric Microcoolers)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽、鍺材料是目前與積體電路製程相容性最佳的半導體材料之一,具有低成本與高熱穩定度的優勢。將矽鍺材料微型熱電致冷器置放於積體電路中,針對熱點進行有效的降溫,是未來解決電子元件散熱問題的最佳解。本實驗室已製作且探討柱寬100 nm的複晶矽鍺奈米柱陣列之熱導率、電導率等特性,其中鍺莫耳百分比濃度24%之矽鍺奈米柱陣列,於300K之ZT值估算可達0.5。
本論文研究設計17 × 12 μm2、37 × 32 μm2以及56 × 52 μm2三種面積的複晶矽(Poly-Si)與複晶矽鍺(Poly-Si0.76Ge0.24)柱子(直徑為250 nm/柱高為1 µm)陣列,並重摻雜為P-type (Boron,1 × 1020 cm-3)與N-type (Phosphorus,1 × 1020 cm-3)。再分別以蒸鍍鎳與矽鍺反應形成矽化鎳或矽鍺化鎳以及蒸鍍鋁輔以掀離(lift-off)製程串聯奈米柱底部與頂部,完成P-N對奈米矽鍺柱微型熱電致冷元件。
分別控制環境溫度於30、60與90 oC,以電流1、3、5、7、9與11 µA驅動元件,探討奈米矽鍺柱陣列面積以及複晶矽鍺內的鍺濃度對於致冷溫度之影響。實驗結果顯示,對於複晶矽柱陣列而言,不論其陣列面積大小、注入方式(N或P-型注入)、注入電流大小或測試環境溫度,皆無明顯之致冷效果,溫度變化皆在測試之誤差變異以內。反觀,複晶矽鍺柱陣列熱電致冷元件,以P-型端注入為例,56 × 52 μm2陣列有明顯的降溫能力,且測試環境溫度愈高(由306090 oC),致冷溫度差愈佳(4713 oC)。在環境溫度90 oC,注入電流11 µA的條件下,最大的致冷溫度可達13oC。中尺寸37 × 32 μm2之複晶矽鍺柱陣列熱電致冷元件,在N-型端注入驅動電流時,也展現良好的致冷能力。尤其是在環境溫度90 oC、驅動電流11 µA時,具有最佳之致冷效果,致冷溫度可達15 oC。此外,在環境溫度90 oC,注入電流11 µA的條件下,不論是以N-型或P-型端注入驅動電流,皆可以發現增加複晶矽鍺柱陣列的面積可以有效提升其致冷能力。
摘要(英) Silicon and germanium are the best semiconductor material choices for the integrated circuit for their material robustness and the fabrication process compatibility. Therefore, placement of SiGe thermoelectric microcoolers into integrated circuits to cool local hot spots is one of the promising, optimal solution to solve the heat problem in the future. Our research group has fabricated and explored the characteristics of thermal conductivity and electrical conductivity for 100 nm-wide poly-SiGe-pillars-array. Extensive experimental results show that 100 nm-wide, poly-SiGe nanopillars array with the Ge mole concentration of 24% possess, the estimated thermoelectric figure of merit (ZT) to up to 0.5 at 300 K.
In this thesis, we have fabricated poly-Si and poly-Si0.76Ge0.24 P-N pillars (diameter of 250 nm/ height of 1 μm) arrays with various of area size in 17 × 12 μm2, 37 × 32 μm2 and 56 × 52 μm2. P-N pillars were produced by ion implantation of Boron/1 × 1020 cm-3 as P-dopants and Phosphorus/1 × 1020 cm-3 for N-type donors, respectively. Following nickel evaporation and silicidation and rapid-thermal annealing, NiSi/NiSiGe nanocontacts were produced to connect the bottom of N- and P-pillars. Also aluminum top electrodes form by thermal evaporation of aluminum in conjunction with lift-off process were formed to bridge the top of pillars, the P-/N- pair SiGe nanopillar thermoelectric microcooler.
We systematically investigated effects of the array size and Ge concentration of poly-SiGe nanopillars on cooling capability at test conditions of the environmental temperature at 30, 60 and 90 oC as well as the driving current of 1, 3, 5, 7, 9 and 11 μA, respectively. Experimental results suggest that the poly-Si0.76Ge0.24 thermoelectric cooler with areas size of 37 × 32 µm2 possesses the best of the cooling capability with cooling temperature up to 15 oC for the condition of environmental temperature at 90 oC, and driving current at 11 μA.
關鍵字(中) ★ 複晶矽
★ 複晶矽鍺
★ 矽鍺
★ 致冷元件
★ 熱電
關鍵字(英) ★ Poly-Si
★ Poly-SiGe
★ SiGe
★ Thermocooler
★ cooling
論文目次 中文摘要……………………………………………………………………………….I
英文摘要…………………………………………………………………….……….III
誌謝…………………………………………………………………………….……..V
目錄…………………………………………………………………………….…….VI
圖目錄……………………………………………………………………………... ..IX
表目錄…………………………………………………………………………...…XIV
第一章 序論…………………………………………………………………………..1
1-1電子元件的發展與熱管理的重要性…………………………………………1
1-2熱電材料的發展歷史…………………………………………………………2
1-2-1熱電材料的性能指標:熱電優質………………………………...……..2
1-2-2熱電材料的發展………………………………………………………...2
1-3熱電致冷器(thermoelectric cooler)簡介……………………………………...7
1-3-1熱電致冷器原理—帕爾帖效應(Peltier effect) ………………………...7
1-3-2熱電致冷器的演進……………………………………………………...8
1-3-3奈米尺寸熱電元件的發展……………………………………………...9
1-4研究動機與實驗設計………………………………………………………..10
第二章 P-N對複晶矽鍺柱微熱電致冷元件製作流程……………………………26
2-1元件結構概述………………………………………………………………..26
2-2複晶矽鍺柱微熱電致冷元件製作流程……………………………………..26
2-2-1薄膜堆疊沉積………………………………………………………….27
2-2-2熱電致冷單位元製作流程…………………………………………….28
2-2-3定義P-N對奈米矽鍺柱……………………………………………….30
2-2-4金屬化P-N對奈米矽鍺柱底部與主動區串聯製作………………….31
2-2-5定義溫度感測金屬線………………………………………………….33
第三章 熱電致冷元件量測方式與原理……………………………………………43
3-1熱電致冷元件量測儀器設置 ………………………………………………43
3-2熱電致冷元件之溫度萃取…………………………………………………..43
3-2-1熱電偶(thermocouple)量測法…………………………………………44
3-2-2紅外線攝影機(IR camera)量測法……………………………………..44
3-2-3熱反射(thermoreflectance)量測法………………………………….…45
3-2-4整合式溫度感測器(Integrated temperature sensor)量測法………...…45
3-3熱電致冷元件量測與溫度萃取流程……………………………………..…46
3-3-1熱電致冷元件量測流程…………………………………………….…46
3-3-2電阻溫度係數(TCR)之萃取………………………………………..…48
第四章 熱電致冷元件量測數據分析………………………………………………53
4-1致冷元件之溫度萃取與修正……………………………………………..…53
4-1-1加熱系統溫度偏差與量測誤差之修正…………………………….…53
4-1-2量測數據之線性擬合與平移流程………………………………….…55
4-2熱電致冷元件尺寸與致冷能力之相依性………………………………..…56
4-2-1複晶矽(Poly-Si)熱電致冷元件尺寸與致冷能力探討……………..…56
4-2-2複晶矽鍺(Poly-Si0.76Ge0.24)熱電致冷元件尺寸與致冷能力探討……58
4-2-3尺寸效應-熱電致冷元件尺寸對致冷能力之影響………………….. 59
4-3複晶矽(Poly-Si)/複晶矽鍺(Poly-Si0.76Ge0.24)材料對致冷能力之影響…..…61
4-3-1複晶矽/複晶矽鍺材料對17 × 12 µm2熱電致冷元件於致冷能力之影
響………………………………………………………………………61
4-3-2複晶矽/複晶矽鍺材料對37 × 32 µm2熱電致冷元件於致冷能力之影
響………………………………………………………………………62
4-3-3複晶矽/複晶矽鍺材料對56 × 52 µm2熱電致冷元件於致冷能力之影
響………………………………………………………………………63
4-3-4鍺濃度效應-熱電致冷元件矽鍺濃度對致冷能力之影響………...…65
第五章 總結與未來展望……………………………………………………………72
參考文獻…………………………………………………………………………..…74
參考文獻 [1] Jon Domingo, Ensuring optimal high power LED performance with thermal
management, 2001, from http://www.ecnmag.com/articles/2011/04/ensuring-
optimal -high-power-led-performance-thermal-management
[2] Xiaofeng Fan, “Silicon Microcoolers”, UC Santa Barbara, Ph. D. thesis, 2002.
[3] Hilaal Alam and Seeram Ramakrishna, “A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials”, Nano Energy, 2, 190-212, 2013.
[4] C. J. Vineis, et al., “Nanostructured thermoelectrics: big efficiency gains from
small features”, Adv. Mater., 22, 3970-3980, 2010.
[5] R. Venkatasubramanian, et al., “Thin-film thermoelectric devices with high
room-temperature figures of merit”, Nature, Vol. 413, 597-602, 2001.
[6] T.C. Harman, et al., “Quantum Dot Superlattice Thermoelectric Materials and
Devices”, Science, 297, 2229-2232, 2002.
[7] A. Samarelli, et al., “The thermoelectric properties of Ge/SiGe modulation doped superlattices”, Jour. of Appl. Phys, 113, 233704, 2013.
[8] X. W. Wang, et al., “Enhanced thermoelectric figure of merit in nanostructured
n-type silicon germanium bulk alloy”, Appl. Phys. Lett., 93, 193121, 2008.
[9] G. Joshi, et al., “Enhanced Thermoelectric Figure-of-Merit in Nanostructured
p-type Slicon Germanium Bulk Alloys”, Nano Lett., 8, 4670-4674, 2008.
[10] Sabah K. Bux, et al., “Nanostructured Bulk Silicon as an Effective Thermoelectric Material”, Adv. Funct. Mater., 19, 2445-2452, 2009.
[11] Allon I. Hochbaum, et al., “Enhanced thermoelectric performance of rough silicon nanowires”, Nature, Vol. 451, 163-167, 2008.
[12] Akram I. Boukai, et al., “Silicon nanowires as efficient thermoelectric materials”, Nature, Vol. 451,168-171, 2008.
[13] Julio A. Martinez, et al., “Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering”, Jour. of Appl. Phys, 110, 074317, 2011.
[14] 朱旭山,「熱電材料與元件之發展與應用」,工研院材料所熱管理材料及元
件實驗室,工業材料雜誌,220,93-103,2005。
[15] Y. Li, et al., ”Improved vertical silicon nanowire based thermoelectric power generator with polymide filling”, IEEE Electron Device Lett., vol. 33, No. 5, 2012.
[16] Y. Li, et al., ”Effect of electrical contact resistance in a silicon nanowire
thermoelectric cooler and a design guideline for on-chip cooling applications”,
Jour. of Electronic Materials, vol. 42, issue 7, 1476-1481, 2013.
[17] A. J. Minnich, et al., “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ. Sci., vol. 2, 466-479, 2009.
[18] 曾瀚陞,「調變複晶矽鍺之鍺含量與材料維度對熱傳導率與電傳導率影響評
估研究」,國立中央大學,碩士論文,2013。
[19] C. J. Glassbrenner and Glen A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point”, Phys. Rev., vol. 134, no. 4A, A1058-1069, 1964.
[20] 柯賢文,「熱電轉換及其應用」,科技發展政策報導,5,51-65,2007。
[21] 林庚諭,「微型矽鍺奈米柱熱電致冷器製備與研究」,國立中央大學,碩士
論文,2013。
指導教授 李佩雯、郭明庭(Pei-Wen Li Ming-Ting Kuo) 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明