博碩士論文 101521128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.145.184.162
姓名 高維新(Wei-xin Kao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵場效電晶體之動態特性與表面處理研究
(Study of Dynamic Characteristics and Surface Treatments of GaN Field Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 減少能源消耗是現今的一大課題,在電子電路中,功率元件所消耗的能量居整體大宗,因此,研發氮化鎵功率元件取代矽製功率元件在電源、馬達驅動、不斷電系統、功率因子校正等處的角色、達到減少功率消耗是當務之急。而對於應用在開關電路的氮化鎵功率電晶體,動態電阻是尚未被完全釐清的問題。
動態電阻肇因於元件內部的缺陷捕捉自由電荷致使導通電流下降。本研究使用成長於矽基板的氮化鋁鎵/氮化鎵異質結構製作高速電子遷移率與金氧半場效電晶體進行研究。為了找出影響動態特性的因子,此處對於氮化鋁鎵/氮化鎵MIS-HEMTs設計了不同的界面處理方法含:一、未處理,二、臨場氫氣/氬氣電漿處理,三、鹽酸水溶液處理,四、鹽酸水溶液後再以臨場氫氣/氬氣電漿處理。結果無法從遲滯、界面能態密度等量測結果中找出其與動態電阻的關聯性,這表示有其他影響動態電阻的因素存在。
為此設計不同偏壓條件與偏壓時間的量測,並對氮化鋁鎵/氮化鎵HEMTs的電流回復曲線進行分析,結果發現在相同的偏壓條件下,偏壓時間越長會使陷捕電子的脫離時間常數越長。這表示電子若需從最終的陷捕位置成為自由電子,必須經過多次的脫離與再陷捕,使其脫離時間常數加長。當進行基板施加負偏壓的背閘極量測時,負偏壓越大會使陷捕電子越靠近2DEG通道,因此電子脫離時間常數越小。在零偏壓情況下,缺陷內陷捕電子數量的多寡,會影響動態量測後電流回復曲線的趨勢。缺陷能階本身,不應被視為唯一會影響動態電阻優劣的變數,還必須將陷捕電子位置納入考量才能更正確地解析電流回復趨勢。基於這種理解之上,將能建立解析動態電阻的模型,並預測不同能階、不同位置的缺陷在不同偏壓條件與偏壓時間之下的動態電阻行為,藉此設計元件結構與佈局。
摘要(英) Reducing energy consumption is a major issue today. In the electronic circuits, most of the energy is consumed by power devices. Therefore, to replace silicon power devices by GaN power devices is a priority in the power systems, electric vehicles, UPS systems, power factor correction, etc. For GaN MIS-HEMTs applied in switching circuits, the mechanism of dynamic on-resistance is a problem not yet been fully clarified.
Dynamic on-resistance prompted by the charges trapped by defects so that the conduction current decreases. In this study, GaN-on-Si HEMT wafer was used and Al0.26Ga0.74N/GaN HEMTs and MIS-HEMTs was fabricated. In order to identify the impact of the dynamic characteristics of factors, where the MIS-HEMTs designed different interface treatments of processing: (i) untreated, (ii) in-situ hydrogen/argon plasma treatment, (iii) aqueous hydrochloric acid solution, and (iv) after an aqueous solution of hydrochloric acid with in-situ hydrogen/argon plasma treatment. No correlation was found between results of dynamic on-resistance and hysteresis or interface state density, which means existing other factors. level
For analyzing the recovery of drain current after stress, different bias conditions and stress time was applied. It was found that under the same bias conditions, a longer stress time causes a longer emission time constant. This suggests that the trapped charges located far from 2DEG or electrode undergo repeated emission and trapping in recovery which increases the emission time constant. In the backgating measurement, when the negative bias is applied on substrate, a greater negative bias makes more electrons trapped near to 2DEG, therefore a shorter emission time constant was observed. The number of trapped charges under zero bias condition could change the trend of recovery of drain current seriously. According to the results, the location of trapped charges should be considered to be one of the most important factor to influence recovery curve of drain current. Based on this conclusion, the analysis of dynamic on-resistance and then the design of epitaxy or device process could be improved.
關鍵字(中) ★ 氮化鎵
★ 電流回復
關鍵字(英) ★ GaN
★ current recovery
論文目次 摘要 I
Abstract II
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵材料特性 2
1.2.1 矽、碳化矽、氮化鎵特性比較 2
1.2.2 氮化鎵材料中的自發與壓電極化 3
1.3 應用於開關電路中的氮化鎵功率元件研發現況 6
1.4 研究動機與論文架構 8
第二章 氮化鋁鎵/氮化鎵HEMTs與MIS-HEMTs 9
2.1 前言 9
2.2 磊晶片結構與霍爾特性 9
2.3 HEMTs與MIS-HEMTs元件製作流程 10
2.3.1 定義主動區 10
2.3.2 歐姆電極製作 10
2.3.3 界面處理 10
2.3.4 絕緣層沉積(對於MIS-HEMTs) 12
2.3.5 蝕刻電極窗口(對於MIS-HEMTs) 12
2.3.6 閘極與墊層金屬沉積 12
2.3.7 熱退火(MIS-HEMTs, Al2O3) 12
2.4 氮化鋁鎵/氮化鎵HEMTs 特性分析 15
2.4.1 HEMTs 的導通電阻分析 15
2.4.2 HEMTs崩潰特性分析 16
2.5 氮化鋁鎵/氮化鎵MIS-HEMTs 特性分析 17
2.5.1 ID-VG曲線分析 17
2.5.2 MIS電容分析 20
2.5.3 MIS-HEMTs崩潰特性分析 24
2.6 本章總結 25
2.6.1 氮化鋁鎵/氮化鎵HEMTs 25
2.6.2 氮化鋁鎵/氮化鎵MIS-HEMTs 25
第三章 不同界面處理的氮化鋁鎵/氮化鎵MIS-HEMTs 26
3.1 氮化鎵表面處理的必要性 26
3.2 介電質/氮化鎵界面處理原理與實驗設計 27
3.2.1 有機溶液與鹽酸水溶液處理 27
3.2.2 臨場電漿處理 27
3.2.3 氮化鎵表面處理實驗設計 29
3.3 經臨場氫氣/氬氣電漿處理的MIS-HEMTs 電性分析 29
3.3.1 ID-VG(臨場氫氣/氬氣電漿處理) 29
3.3.2 MIS電容(臨場氫氣/氬氣電漿處理) 31
3.3.3 崩潰曲線(臨場氫氣/氬氣電漿處理) 32
3.4 經鹽酸水溶液處理的MIS-HEMTs 電性分析 33
3.4.1 ID-VG(鹽酸水溶液處理) 33
3.4.2 MIS電容(鹽酸水溶液處理) 35
3.4.3 崩潰曲線(鹽酸水溶液處理) 36
3.5 MIS-HEMTs 動態特性分析 37
3.6 本章總結 39




第四章 氮化鋁鎵/氮化鎵HEMTs的動態特性分析 40
4.1 HEMTs動態電阻分析 40
4.1.1 HEMTs動態電阻量測結果 40
4.1.2 變動的缺陷脫離時間常數 42
4.1.3 電子陷捕、脫離機制與缺陷在磊晶結構中的位置 45
4.2 不同偏壓條件的電流回復分析 48
4.2.1 短脫離時間常數與電子陷捕位置 48
4.2.2 改變空乏區範圍對陷捕電子的影響 55
4.2.3 背閘極量測(基板施加負偏壓) 60
4.2.4 背閘極量測(基板施加正偏壓) 67
4.3 本章總結 73
第五章 結論與未來展望 74
參考文獻 75
參考文獻 [1] "Power Electronics in Electric and Hybrid Vehicles 2014 Report," 2014.
[2] J. EO, "Physical limitations on frequency and power parameters of transistors," IRE Int Convention Record, 1965.
[3] B. J. BALIGA, "Power Semiconductor Device Figure of Merit for High-Frequency Applications," ELECTRON DEVICE LETTERS, vol. 10, 1989.
[4] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, p. 3222, 1999.
[6] K. Cheng, M. Leys, S. Degroote, J. Derluyn, B. Sijmus, P. Favia, et al., "AlGaN/GaN High Electron Mobility Transistors Grown on 150 mm Si(111) Substrates with High Uniformity," Japanese Journal of Applied Physics, vol. 47, pp. 1553-1555, 2008.
[7] D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, et al., "Uniform Growth of AlGaN/GaN High Electron Mobility Transistors on 200 mm Silicon (111) Substrate," Applied Physics Express, vol. 6, p. 026501, 2013.
[8] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer," Journal of Crystal Growth, vol. 128, pp. 391-396, 1993.
[9] A. Able, W. Wegscheider, K. Engl, and J. Zweck, "Growth of crack-free GaN on Si(111) with graded AlGaN buffer layers," Journal of Crystal Growth, vol. 276, pp. 415-418, 2005.
[10] X. Xin, J. Shi, L. Liu, J. Edwards, K. Swaminathan, M. Pabisz, et al., "Demonstration of Low-Leakage-Current Low-On-Resistance 600-V 5.5-A GaN/AlGaN HEMT," ELECTRON DEVICE LETTERS, vol. 30, pp. 1027-1029, 2009.
[11] H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, et al., "Over 100A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage," Solid-State Electronics, vol. 54, pp. 660-664, 2010.
[12] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, et al., "Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, pp. 1825-1830, 2007.
[13] M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, "Current/voltage characteristic collapse in AIGaN/GaN heterostructure insulated gate field effect transistors at high drain bias," ELECTRONICS LETTERS, vol. 30, 1994.
[14] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 48, pp. 560-566, 2001.
[15] T. Hashizume, S. Ootomo, and H. Hasegawa, "Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al[sub 2]O[sub 3] dielectric," Applied Physics Letters, vol. 83, p. 2952, 2003.
[16] D. Bisi, M. Meneghini, C. d. Santi, A. Chini, M. Dammann, P. Brückner, et al., "Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 60, 2013.
[17] O. Mitrofanov, "Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors," Journal of Applied Physics, vol. 95, p. 6414, 2004.
[18] O. Mitrofanov and M. Manfra, "Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors," Superlattices and Microstructures, vol. 34, pp. 33-53, 2003.
[19] A. Sozza, C. Dua, E. Morvan, M. A. diForte-Poisson, S. Delage, F. Rampazzo, et al., "Evidence of Traps Creation in GaN/AlGaN/GaN HEMTs After a 3000 Hour On-state and Off-state Hot-electron Stress," 2005.
[20] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, et al., "1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic ON-Resistance," ELECTRON DEVICE LETTERS, vol. 32, pp. 632-634, 2011.
[21] X. Lu, J. Ma, Z. Liu, H. Jiang, T. Huang, and K. M. Lau, "In situ SiNx gate dielectric by MOCVD for low-leakage-current ultra-thin-barrier AlN/GaN MISHEMTs on Si," physica status solidi (a), vol. 211, pp. 775-778, 2014.
[22] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, et al., "High-Quality Interface in Al2O3/GaN/AlGaN/GaN MIS Structures With In Situ Pre-Gate Plasma Nitridation," ELECTRON DEVICE LETTERS, vol. 34, pp. 1497-1499, 2013.
[23] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, et al., "Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs : Role of Surface Traps and Buffer Leakage," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 62, pp. 782-787, 2015.
[24] J. Joh and J. A. d. Alamo, "A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 58, pp. 132-140, 2011.
[25] D. Bisi, M. Meneghini, M. Van Hove, D. Marcon, S. Stoffels, T.-L. Wu, et al., "Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate," physica status solidi (a), 2015.
[26] Z. Q. Fang, D. C. Look, D. H. Kim, and I. Adesida, "Traps in AlGaN∕GaN∕SiC heterostructures studied by deep level transient spectroscopy," Applied Physics Letters, vol. 87, p. 182115, 2005.
[27] Chihoko Mizue, Yujin Hori, Marcin Miczek, and T. Hashizume, "Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," JJAP, vol. 50, 2011.
[28] S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," ELECTRON DEVICE LETTERS, vol. 34, 2013.
[29] N. V. Edwards, M. D. Bremser, T. W. Weeks Jr., R. S. Kern, R. F. D. and, and D. E. Aspnes, "Real‐time assessment of overlayer removal on GaN, AlN, and AlGaN surfaces using spectroscopic ellipsometry," Applied Physics Letters, vol. 69, 1996.
[30] S. W. King, J. P. Barnak, M. D. Bremser, K. M. Tracy, C. Ronning, R. F. Davis, et al., "Cleaning of AlN and GaN surfaces," Journal of Applied Physics, vol. 84, 1998.
[31] Ichitaro WAKI, Hiroshi FUJIOKA, Kanta ONO, Masaharu OSHIMA, H. M. and, and A. FUKIZAWA, "The effect of surface cleaning by wet Treatments and ultra high vacuum annealing for ohmic contact formation of P-type GaN," Japanese Journal of Applied physics, vol. 39, pp. 4451-4455, 2000.
[32] A. J. Kerr, E. Chagarov, S. Gu, T. Kaufman-Osborn, S. Madisetti, J. Wu, et al., "Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide," J Chem Phys, vol. 141, Sep 14 2014.
[33] Sen Huang, Qimeng Jiang, Shu Yang, a. Chunhua Zhou, and K. J. Chen, "Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film," ELECTRON DEVICE LETTERS, vol. 33, pp. 516-518, 2012.
[34] M. Esposto, S. Krishnamoorthy, D. N. Nath, S. Bajaj, T.-H. Hung, and S. Rajan, "Electrical properties of atomic layer deposited aluminum oxide on gallium nitride," Applied Physics Letters, vol. 99, p. 133503, 2011.
[35] N.-Q. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, "Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs," 2001.
[36] K. A. Rickert, A. B. Ellis, F. J. Himpsel, J. Sun, and T. F. Kuech, "n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy," Applied Physics Letters, vol. 80, p. 204, 2002.
[37] N. Nepal, N. Y. Garces, D. J. Meyer, J. K. Hite, M. A. Mastro, and J. Charles R. Eddy, "Assessment of GaN Surface Pretreatment for Atomic Layer Deposited High-k Dielectrics," Applied Physics Express, vol. 4, 2011.
[38] K. Tanaka, M. Ishida, T. Ueda, and T. Tanaka, "Effects of Deep Trapping States at High Temperatures on Transient Performance of AlGaN/GaN Heterostructure Field-Effect Transistors," Japanese Journal of Applied Physics, vol. 52, p. 04CF07, 2013.
[39] A. Brannick, N. A. Zakhleniuk, B. K. Ridley, J. R. Shealy, W. J. Schaff, and L. F. Eastman, "Influence of Field Plate on the Transient Operation of the AlGaN/GaN HEMT," ELECTRON DEVICE LETTERS, vol. 30, pp. 436-438, 2009.
[40] K. Horio, A. Nakajima, and K. Itagaki, "Analysis of field-plate effects on buffer-related lag phenomena and current collapse in GaN MESFETs and AlGaN/GaN HEMTs," Semiconductor Science and Technology, vol. 24, p. 085022, 2009.
[41] O. Hilt, E. Bahat-Treidel, E. Cho, S. Singwald, and J. Würfl, "Impact of Buffer Composition on the Dynamic On-State Resistance of High-Voltage AlGaN/GaN HFETs," 2012.
[42] M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Chini, A. Pantellini, et al., "Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, 2014.
[43] A. R. Arehart, T. Homan, M. H. Wong, C. Poblenz, J. S. Speck, and S. A. Ringel, "Impact of N- and Ga-face polarity on the incorporation of deep levels in n-type GaN grown by molecular beam epitaxy," Applied Physics Letters, vol. 96, p. 242112, 2010.
[44] M. Huber, M. Silvestri, L. Knuuttila, G. Pozzovivo, A. Andreev, A. Kadashchuk, et al., "Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN/GaN metal insulator semiconductor high electron mobility transistors," Applied Physics Letters, vol. 107, p. 032106, 2015.
[45] A. Asgari, S. Babanejad, and L. Faraone, "Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN heterostructures," Journal of Applied Physics, vol. 110, p. 113713, 2011.
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明