博碩士論文 101522057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.233.239.102
姓名 薛仲呈(Zhong-cheng Xue)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一個類自我組織映射圖之仿人型機器人手臂的逆向運動學建模方法
(An SOM-Like Approach to Inverse Kinematics Modeling for Humanoid Robot Arms)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 模糊類神經網路為架構之遙測影像分類器設計
★ 複合式群聚演算法★ 身心障礙者輔具之研製
★ 指紋分類器之研究★ 背光影像補償及色彩減量之研究
★ 類神經網路於營利事業所得稅選案之應用★ 一個新的線上學習系統及其於稅務選案上之應用
★ 人眼追蹤系統及其於人機介面之應用★ 結合群體智慧與自我組織映射圖的資料視覺化研究
★ 追瞳系統之研發於身障者之人機介面應用★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用
★ 基因演算法於語音聲紋解攪拌之應用★ 虹膜辨識系統之研究與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 機器人運動學的建模一直是機器人的主要研究課題之一,本論文目的是要賦予一個以快速成型建立的仿人形機器手臂可以即時地用手指指向目標位置的定位能力。為了實現這一目標,此機器人系統必須具備一個高效能的逆向運動學建模的解決方案。
在本篇論文提出了一個用於仿人形機器人手臂的類自我組織特徵映射圖的逆運動學建模方法,該建模方法背後的主要思維是將機器人手臂的工作空間離散化成一個由N_x×N_y×N_z取樣點所組成的立方晶格。每個取樣點定義了一個相對應的區域,並分配一顆網格節點j,其中儲存五種不同的參數:〖W_j〗^i-為網格節點於晶格狀網格的索引值向量,〖W_j〗^c-為此網格節點的座標向量,〖W_j〗^x-為網格節點的目前位置向量,〖W_j〗^θ-為對應此網格節點位置之各關節角度向量,〖W_j〗^J-為對應此網格節點位置之Jacobian矩陣。我們提出的建模方法可以透過一組訓練資料來快速學習到此五種資訊之正確值,訓練資料集的生成方案可以透過均勻分佈的量化方式或是實際操作機械手臂來構建起來。我們利用以下兩個步驟來從工作空間中的目標位置推算出相對應的關節角度:首先,我們先找到離目標位置最接近的對應網格節點;其次,透過對應網格節點內的位置向量 〖W_j〗^x、角度向量 〖W_j〗^θ以及Jacobian矩陣〖W_j〗^J等資訊,以Jacobian矩陣的線性逼近 "Θ(" ▁x) 的方式,來推導到達此目標位置所需要的關節角度向量。
我們用以立體成型的仿人形機器人手臂來對所提出的建模方法的性能進行測試。第一個實驗是在機器人手臂的模擬環境中進行的,在20800筆訓練資料和9072測試資料下,其平均準確度分別可以達到4.95毫米與4.91毫米的平均誤差,且可在0.03毫秒下以一種多步驟疊代方式修正到只有0.37毫米的誤差。
摘要(英) Robot kinematics modeling has been one of the main research issues in robotics research.The goal of this thesis is to endow a 3-D printed humanoid robot arm with the ability of positioning its fingers to a target position in real time. To achieve this goal, the robot system has to seek a high efficiency solution to inverse kinematics modeling. In this thesis, an SOM-like inverse kinematics modeling method for humanoid robot arms is proposed. The principal idea behind the proposed modeling method is to discretize the work space of the robot arm into a cubic lattice consisting of N_x×N_y×N_z sampling points. Each sampling point corresponds to a reciprocal zone and is assigned one grid node, storing five different data items: the index vector of the sampling point〖▁W_j〗^i, the coordinate vector of sampling point〖▁W_j〗^c, the position vector〖▁W_j〗^x, the output vector〖▁W_j〗^θ, and the Jacobian matrix〖▁W_j〗^J. All these five data terms can be quickly learned by the proposed modeling method from acollected training data set in an SOM-like manner. The training data set can be constructed by either the uniformly discretization scheme or the real-life data generation scheme. The computations of the joint angles corresponding to a target position in the work space involve the following two steps. First of all, we search the reciprocal zone which is closest to the target position. Secondly, the joint angles are approximated by a linear Jacobian expansion of the transformation"Θ(" ▁x) via the position vector 〖▁W_j〗^x, the output vector 〖▁W_j〗^θ, and the Jacobian matrix 〖▁W_j〗^J within the reciprocal zone.
The performance of the proposed SOM-like inverse kinematics modeling method was tested on a 3-D printed robot arm with 5 degrees of freedom(DOF). The first experiment was conducted on a simulated robot arm environment. An averag eerror of 4.95mm and 4.91mm could be achieved over the 20,800 training data and 9,072 testing data, respectively. In addition, we can use a multi-step method to improve the performance to achieve 0.37mm errors in 0.03milliseconds.
關鍵字(中) ★ 逆向運動學
★ 智慧型機器人
★ 快速成型
關鍵字(英) ★ Inverse Kinematics
★ Intelligent Robot
★ Rapid Prototyping
論文目次 摘要 I
ABSTRACT III
致謝 V
圖目錄 X
表目錄 XIII
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 3
二、 相關研究 5
2-1 機器人之運動學分析 5
三、 硬體介紹 12
3-1 三維列印之仿人型機器人 12
3-1-1 快速成形技術 12
3-1-2 立體快速技術製作機器人 15
3-2 機械人機構 18
3-2-1 機械人機電與控制 21
3-2-2 機構建造遭遇之困難點 25
3-3 景深感測器 30
四、 快速逆向運動學之建模方式 32
4-1 建模系統流程 32
4-2 建立正向運動學模型 37
4-2-1 正向運動學分析方法 39
4-2-2 機器手臂正向運動學 42
4-3 逆向運動學建模之訓練演算法 46
4-4 線上應用與多步驟之誤差修正法 61
五、 實驗設計與結果 67
5-1 建模誤差之模擬結果 70
5-1-1 網格節點數目增加與誤差關聯性 73
5-1-2 多步驟修正法其誤差下降與花費時間 74
5-2 軌跡追蹤實驗 75
六、 結論與未來展望 83
6-1 結論 83
6-1-1 軟硬體整合上之困難點 85
6-2 未來展望 85
6-2-1 機構方面 86
6-2-2 應用方面 87
參考文獻 88
參考文獻 [1] A Short History of Robots. Available: http://prime.jsc.nasa.gov/ROV/history.html
[2] S. Thrun, "Toward a framework for human-robot interaction," Human–Computer Interaction, vol. 19, pp. 9-24, 2004.
[3] S.-C. Lin, "A Neural-Network-based Mechanism for Teaching Robots to Imitate Human Actions," 2013.
[4] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay, and I. Werry, "What is a robot companion-friend, assistant or butler?," in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, 2005, pp. 1192-1197.
[5] 王秀煜, "非冗餘自由度機械臂路徑規劃之奇異性問題研究=," 2005.
[6] A. Aristidou and J. Lasenby, "Inverse kinematics: a review of existing techniques and introduction of a new fast iterative solver," 2009.
[7] 袁芳碩, "紅外線感測為基礎之餵食機器人研製; The Study of an Infra-red-detector-based Meal Assistance Robot," 2010.
[8] R. P. Paul and B. Shimano, "Kinematic control equations for simple manipulators," in Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE Conference on, 1978, pp. 1398-1406.
[9] C. G. Lee, "Robot arm kinematics, dynamics, and control," Computer, vol. 15, pp. 62-80, 1982.
[10] S. Sasaki, "Feasibility studies of kinematics problems in the case of a class of redundant manipulators," Robotica, vol. 13, pp. 233-241, 1995.
[11] D. E. Whitney, "Resolved motion rate control of manipulators and human prostheses," IEEE Transactions on man-machine systems, 1969.
[12] A. A. Maciejewski and C. A. Klein, "Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments," The international journal of robotics research, vol. 4, pp. 109-117, 1985.
[13] T.-s. Hsu, "以立體視覺為基礎之機械手臂應用系統," 2010.
[14] J. K. Parker, A. R. Khoogar, and D. E. Goldberg, "Inverse kinematics of redundant robots using genetic algorithms," in Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on, 1989, pp. 271-276.
[15] S. Tabandeh, C. M. Clark, and W. Melek, "A genetic algorithm approach to solve for multiple solutions of inverse kinematics using adaptive niching and clustering," Computer Science and Software Engineering, p. 63, 2006.
[16] 王俊程, "應用最小平方法於快速逆向運動學之研究," 碩士, 自動控制工程所, 逢甲大學, 台中市, 2009.
[17] P. J. Alsina and N. S. Gehlot, "Robot inverse kinematics: a modular neural network approach," in Circuits and Systems, 1995., Proceedings., Proceedings of the 38th Midwest Symposium on, 1995, pp. 631-634.
[18] E. Oyama, T. Maeda, J. Q. Gan, E. M. Rosales, K. F. MacDorman, S. Tachi, et al., "Inverse kinematics learning for robotic arms with fewer degrees of freedom by modular neural network systems," in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, 2005, pp. 1791-1798.
[19] Y. Yang, G. Peng, Y. Wang, and H. Zhang, "A New Solution for Inverse Kinematics of 7-DOF Manipulator Based on Neural Network," in Automation and Logistics, 2007 IEEE International Conference on, 2007, pp. 1958-1962.
[20] S. S. Chiddarwar and N. Ramesh Babu, "Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach," Engineering applications of artificial intelligence, vol. 23, pp. 1083-1092, 2010.
[21] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, "Three-dimensional neural net for learning visuomotor coordination of a robot arm," Neural Networks, IEEE Transactions on, vol. 1, pp. 131-136, 1990.
[22] 張. C. C.-f. 廖. L. S.-m. 王. W. Shin-wei), "[基於自組織映射類神經網路之機器腿的逆向運動分析]," 高雄應用科技大學學報, (20100500) 2010.
[23] J. A. Walter and K. J. Schulten, "Implementation of self-organizing neural networks for visuo-motor control of an industrial robot," Neural Networks, IEEE Transactions on, vol. 4, pp. 86-96, 1993.
[24] L. Behera, M. Gopal, and S. Chaudhury, "Self-organizing neural networks for learning inverse dynamics of robot manipulator," in Industrial Automation and Control, 1995 (IA & C′95), IEEE/IAS International Conference on (Cat. No. 95TH8005), 1995, pp. 457-460.
[25] L. Behera and N. Kirubanandan, "A hybrid neural control scheme for visual-motor coordination," Control Systems, IEEE, vol. 19, pp. 34-41, 1999.
[26] N. Kumar and L. Behera, "Visual–motor coordination using a quantum clustering based neural control scheme," Neural processing letters, vol. 20, pp. 11-22, 2004.
[27] 讓3D印表機替你印出空中樓閣!. Available: http://shs.ntu.edu.tw/student/?p=542
[28] The Benefits of Rapid Prototyping. Available: http://www.inventionaddict.com/2012/02/29/the-benefits-of-rapid-prototyping/
[29] Rapid Prototyping: what is rapid prototyping and rapid prototyping processes. Available: https://www.inventapart.com/what_is_rapid_prototyping.php
[30] cubify. Available: http://cubify.com/
[31] THE POPPY PLATFORM. Available: http://www.poppy-project.org/
[32] G. Langevin. InMoov. Available: http://www.inmoov.fr/project/
[33] ServoDatabase. Available: http://www.servodatabase.com
[34] Arduino Mega 2560. Available: http://arduino.cc/en/Main/arduinoBoardMega2560
[35] Kinect for Windows. Available: http://www.microsoft.com/en-us/kinectforwindows/
[36] J. Denavit, "A kinematic notation for lower-pair mechanisms based on matrices," Trans. of the ASME. Journal of Applied Mechanics, vol. 22, pp. 215-221, 1955.
[37] S. Kucuk and Z. Bingul, "Robot kinematics: forward and inverse kinematics," Industrial Robotics Theory Modelling & Control. ARS/pIV, Germany, pp. 117-148, 2006.
[38] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control vol. 3: Wiley New York, 2006.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2014-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明