博碩士論文 101522095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.239.109.55
姓名 張位群(Wei-Chun Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於多台攝影機即時三維建模
(Real-time 3D Rendering Based on Multiple Cameras and Point Cloud)
相關論文
★ 基於edX線上討論板社交關係之分組機制★ 利用Kinect建置3D視覺化之Facebook互動系統
★ 利用 Kinect建置智慧型教室之評量系統★ 基於行動裝置應用之智慧型都會區路徑規劃機制
★ 基於分析關鍵動量相關性之動態紋理轉換★ 基於保護影像中直線結構的細縫裁減系統
★ 建基於開放式網路社群學習環境之社群推薦機制★ 英語作為外語的互動式情境學習環境之系統設計
★ 基於膚色保存之情感色彩轉換機制★ 一個用於虛擬鍵盤之手勢識別框架
★ 分數冪次型灰色生成預測模型誤差分析暨電腦工具箱之研發★ 使用慣性傳感器構建即時人體骨架動作
★ 基於互補度與社群網路分析於基因演算法之分組機制★ 即時手部追蹤之虛擬樂器演奏系統
★ 基於類神經網路之即時虛擬樂器演奏系統★ 即時手部追蹤系統以虛擬大提琴為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2000年以前就有三維模型的技術,直到2009 年「阿凡達」3D電影才開始受到關注,電影裡的場景、角色、各種外星生物栩栩如生,觀賞電影者深刻的了解虛擬世界的樣貌,遊戲中的世界及特效帶給玩家全新的體驗,「魔獸世界」、「暗黑破壞神」更是3D電腦遊戲的代表作品,「數位典藏」將歷史文物數位化成容易保存的資料,三維模型才可以完整的呈現歷史文物的真實樣貌,如今各個領域皆需要非常大量的三維模型,以往的三維建模非常的耗時且需要大量的人力來完成,如果可以藉由簡單的設備來輔助,在各個領域都會有很大的幫助。
經由上述介紹可以了解建立3D模型的困難處,有鑑於此,即時3D建模成為重要的議題。Kinect為Mircosoft所研發的劃時代攝影機,在各個研究領域中都時常被用到,例如:電腦視覺及圖學…等領域。由於Kinect可以偵測每個像素距離Kinect的距離,所以Kinect能夠即時擷取的人體三維資料,並經由人體偵測演算法以產生對應的點集合,另一方面由RGB鏡頭擷取角色的真實色彩,之後便可在電腦中加以檢視。本研究便是用多台Kinect作為輸入設備,建立出立體三維之點集合,以便參考。
摘要(英) 3D model construction technic is very popular in recent decades. The movie “Avatar” is a milestone of this research; the surrounding, characters and alien creatures in Avatar are so lifelike that viewers would be impressed and shocked by the impact of virtual reality. The video game World of Warcraft and Diablo are another successful instance about 3D model. Kinect is a 3D sensor produced by Microsoft, and is widely used in many research fields, such as Computer Vision, Computer Graphics, etc. With Kinect, the task of efficiently acquiring 3D data would be possible. In other words, the distances between all the positions in Kinect vision and Kinect can be captured and reliable. According to these data, Kinect is able to divide the image into foreground (human) and background quickly and easily draw the geography of human. So this paper would integrate the traditional model building technic and much research about Kinect, and then propose a real-time 3D point cloud displaying method by multiple Kinect.
關鍵字(中) ★ 三維建模
★ 虛擬實境
★ Kinect
★ 電腦視覺
★ 電腦圖學
關鍵字(英) ★ 3D model
★ virtual reality
★ Kinect
★ Computer Vision
★ Computer Graphics
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Background 2
1.3 Thesis Organization 5
Chapter 2. Related Works 7
2.1 3D reconstruction 7
1. Volume-based approaches 7
2. Surface-based approaches 8
3. Depth map based approaches 9
2.2 Motion sensing camera 10
2.3 Human Detection 11
1. Pre-processing 12
2. Finding candidate positions 13
3. Scan by 3D head template 14
4. Get contour of human 15
2.4 Geometry registration 17
1. Closet point 19
2. Normal shooting 19
3. Projection 20
4. Search based on other compatibility metric 21
5. Restriction based on other compatibility metrics 21
2.5 Volumetric integration 23
Chapter 3. Proposed method 27
3.1 Calibration of Kinect vision 28
3.2 Erosion and Dilation 29
3.3 Calibration of Kinects 31
3.4 Shift of point cloud 34
3.5 Integration of point clouds 36
Chapter 4. System Architecture 40
4.1 Practical detail 41
4.2 Functions and modes 45
Chapter 5. Experiment result and Analysis 50
5.1 Calibration 51
5.2 Memory allocation and efficiency 52
Chapter 6. Conclusion and Future works 59
6.1 Conclusion 59
6.2 Future works 60
References 62
參考文獻 [1] L. Xia, C.-C. Chen, and J. K. Aggarwal, "Human Detection Using Depth Information by Kinect," in International Workshop on Human Activity Understanding from 3D Data in conjunction with CVPR (HAU3D), Colorado Springs, CO, June 2011.
[2] Brian Curless and Marc Levoy, “A volumetric method for building complex models from range images,” in Proc. of the 23rd annual conference on Computer graphics and interactive techniques, pp.303-312, August 1996.
[3] Paul J. Besl and Neil D. McKay, "A Method for Registration of 3-D Shapes," in IEEE Transactions on Pattern analysis and machine intelligence, vol. 14, no. 2, pp. 239-256, February 1992.
[4] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges and Andrew Fitzgibbon, “KinectFusion: Real-time dense surface mapping and tracking,” in Proc. of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp.127-136, October 26-29, 2011.
[5] M. Harris, S. Sengupta, and J. D. Owens. “Parallel prefix sum (scan) with CUDA.” In H. Nguyen, editor, GPU Gems 3, chapter 39, pp. 851-876. Addison Wesley, August 2007.
[6] O. Alexander, M. Rogers, W. Lambeth, M. Chiang and P. Debevec, “Creating a Photoreal Digital Actor: The Digital Emily Project,” in Sixth European Conference on Visual Media Production (CVMP), 2009.
[7] Jing Tong, Jin Zhou, Ligang Liu, Zhigeng Pan and Hao Yan, “Scanning 3D Full Human Bodies Using Kinects,” in IEEE Transactions on Visualization and Computer Graphics, v.18 n.4, pp. 643-650, April 2012.
[8] S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” in Int. J. Computer Vision, vol. 35, no. 2, pp. 151-173, 1999.
[9] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” in Int. J. Computer Vision, vol. 38, no. 3, pp. 199-218, 2000.
[10] K. Kutulakos, “Approximate N-view stereo,” in Proc. European Conf. on Computer Vision, vol. 1, pp. 67-83, 2000.
[11] X. Zabulis and K. Daniilidis, “Multi-camera reconstruction based on surface normal estimation and best viewpoint selection,” in Int. Symp. 3D Data Processing, Visualization and Transmission, pp. 733-740, 2004.
[12] D. Gallup, J.–M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, “Real-time plane sweeping stereo with multiple sweeping directions,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.
[13] Y. Furukawa and J. Ponce, “Accurate, Dense, and Robust Multi-view Stereopsis,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.
[14] C.Hernandez and F. Schmitt, “Silhouette and stereo fusion for 3D object modeling,” Computer Vision and Image Understanding, vol. 96, no. 3, pp. 367-392, 2004.
[15] M. Goesele, B. Curless, and S. Seitz, “Multi-view stereo revisited,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 2402-2409, 2006.
[16] B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proc. ACM SIGGRAPH, pp. 303-312, 1996.
[17] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in 3D Digital Imaging and Modeling, pp. 145-152, 2001.
指導教授 施國琛(Timothy K. Shih) 審核日期 2014-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明