博碩士論文 101522107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.235.30.155
姓名 牛建焜(Niu Chien-Kun)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 跟隨前導者軌跡行進的自走車
(Automatic vehicle following the guide’s trajectory)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 透過一個可以自動跟隨前導者軌跡行進的自走車,不論對於廣大地域的導覽、貨品的搬運,或是由於身體障礙需要協助行動的障礙者,都可大大的提高便利性。本研究藉由一個自主控制的系統,可減少許多使用者的負擔;而本系統除了自走車本身外,僅需要一台單眼相機與電腦,就可以完成跟隨前導者軌跡行進的動作。整個系統共分為四部分:一是前導者偵測,二是前導者追蹤,三是前導者距離與方向的估計,四是輪椅控制。
第一部分的前導者偵測是以前導者的方向梯度累積圖 (Histogram of Oriented Gradients) 特徵,經由支援向量機 (Support Vector Machine) 分類器判斷出可能是前導者的物件。第二部分的前導者追蹤,則是透過比對物件的色彩分佈圖 (histogram of color) 確認多物件中最有可能的前導者。第三部分則僅透過一台光學單眼 PTZ 相機,判斷前導者與自走車之間的相對關係,再加上已知相機的架設高度以求得前導者的距離與左右方向。第四部分的輪椅控制是依據前導者與自走車的相對關係,決定自走車的速度與方向。操控自走車以盡量維持前導者在自走車前方 2 公尺的位置,這是前導者可以與身體障礙者溝通,彼此之間又有緩衝的空間,不會讓輪椅撞上前導者的距離。
跟隨前導者軌跡行進的自走車是伍氏科技的電動輪椅 Mambo 513;使用 1 部 Logitech 的 QuickCam® Sphere AF PTZ 彩色相機偵測前方環境。在 Intel Core™i7-3740QM 2.70GHz 及 4GB RAM 的個人電腦上執行,可達每秒 6 至 15 張影像的處理速度。使用多種環境狀況的 3580 張影像實驗,前導者偵測率為 88%,前導者追蹤的正確率為 91%,前導者與自走車距離的錯誤率則有 12%。本研究僅使用一台 PTZ 相機,做到軌跡重現的目標。
摘要(英) We can greatly improve convenience for a vast area of navigation, transportation of goods, or the disable through an automatic vehicle following the guide’s trajectory. This study can reduce the burden of many users by an autonomous system control. In addition to automatic vehicle, the system requires only a monocular camera and a computer to complete the automatic vehicle following guide’s trajectory. The whole system is divided into four parts, including guide detection, guide tracing, estimation of the distance and direction of the guide and automatic vehicle control.
The first part is the guide detection by the features of Histogram of Oriented Gradients and then determining the possible guide objects via Support Vector Machine. The second part is guide tracking which identifies the most likely guide by matching the histogram of color. In the third part, we determine the relationship between the guide and the automatic vehicle and compute the distance and direction of the guide with the known height of the camera. The fourth part is the automatic vehicle control, based on the relative relationship between guide and automatic vehicle we determine automatic vehicle’s speed and direction. The controlled automatic vehicle keeps the guide two meters ahead in order to spare a buffer that allows the communication and avoid collision of the guide and the vehicle.
The automatic vehicle in our study is Wu′s Tech electric wheelchair Mambo 513; using a Logitech’s QuickCam ® Sphere AF PTZ color camera detects in front of the environment. On Intel® Core™ i7-3740QM 2.70GHz PC 4GB RAM and executed up to 6-15 per second processing speed of the frame. Using a variety of environmental conditions in 3580 frames, the correction rate of the guide detection is 88%, the correction rate of guide tracing is 91%, and the error rate for distance estimation between guide and automatic vehicle is 12%. In this study, we get the trajectory reproduce goal by only one PTZ camera.
關鍵字(中) ★ 自走車
★ 前導者
★ 軌跡
★ 單一相機
關鍵字(英) ★ aoutomatic
★ vehicle
★ trajectory
★ camera
論文目次 摘要............. ii
Abstract........ iii
致謝..................... v
目錄..................... vi
圖目錄........... ........ viii
表目錄........... ........ x
第一章 緒論............... 1
第二章 相關研究............ 5
第三章 單眼視覺測距離系統.... 12
第四章 偵測前導者.......... 28
第五章 實驗............... 40
第六章 結論與未來展望....... 52
參考文獻.................. 54
參考文獻 [1]Agarwal, S., A. Awan, and D. Roth, ′′Learning to detect objects in images via a sparse, part-based representation,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2]Alonso, I. P., D. F. Llorca, and M. Á. Sotelo, ′′Combination of feature extraction methods for SVM pedestrian detection,′′ IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[3]An, T.-K. and M.-H. Kim, ′′A new diverse AdaBoost classifier,′′ in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[4]Bertozzi, M., A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, ′′A pedestrian detector using histograms of oriented gradients and a support vector machine classifier,′′ in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, WA, Sept.30-Oct.3, 2007, pp.143-148.
[5]Brown, D. C., “Close-range camera calibration,” Photogrammetric Engineering, vol.37, no.8, pp.855-866, 1971.
[6]Cao, X.-B., H. Qiao, and J. Keane, ′′A low-cost pedestrian-detection system with a single optical camera,′′ IEEE Trans. Intelligent Transportation Systems, vol.9, no.1, pp.58-67, 2008
[7]Chung, W., H. Kim, Y. Yoo, C.-B. Moon, and J. Park, "The detection and following of human legs through inductive approaches for a mobile Robot with a single laser range finder," IEEE Trans. on Industrial Electronics, vol.59, no.8, pp.3156-3166, 2012.
[8]Dalad, N. and B. Triggs, ′′Histograms of oriented gradients for human detection,′′ in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[9]Enzweiler, M., P. Kanter, and D.M. Gavrila, ′′Monocular pedestrian recognition using motion parallax,′′ in Proc. IEEE Intelligent Vehicles Symp., Eindhoven, The Netherlands, June 4-6, 2008, pp.792-797.
[10]Enzweiler, M. and D.M. Gavrila, ′′Monocular pedestrian detection: survey and experiments,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[11]Faig, W., “Calibration of close-range photogrammetry systems: Mathematical formulation,” Photogrammetric Engineering and Remote Sensing, vol.41, no.12, pp.1479-1486, 1975.
[12]Faugeras, O., T. Luong, and S. Maybank, “Camera self-calibration: Theory and experiments,” in Proc. of 2nd European Conf. on Computer Vision, Santa Margherita Ligure, Italy, May 19-22, 1992, vol.588, pp.321-334.
[13]Gennery, D., “Stereo-camera calibration,” in Proc. of 10th Image Understanding Workshop, Los Angeles, CA, Nov.7-8, 1979, pp.101-108.
[14]Hartley, R. and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, 2004.
[15]Kobayashi, T., A. Hidaka, and T. Kurita, ′′Selection of histograms of oriented gradients features for pedestrian detection,′′ in Proc.14th Int. Conf. Neural Information Processing, Kitakyushu, Japan, Nov.13-16, 2007, pp.598-607.
[16]Leibe, B., E. Seemann, and B. Schiele, ′′Pedestrian detection in crowded scenes,′′ in Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.878-885.
[17]Li, L., S. Yan, X. Yu, Y. K. Tan, and H. Li, "Robust multiperson detection and tracking for Mobile Service and social robots," IEEE Trans. on Systems,Man and Cybernetics, vol.42, no.5, pp.1398-1412, 2012.
[18]Marquardt, D., "An algorithm for least-squares estimation of nonlinear parameters," SIAM Journal on Applied Mathematics, vol.11, pp.431-441, 1963.
[19]Mohan, A., C. Papageorgiou, and T. Poggio, ′′Example-based object detection in images by components,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4, pp.349-361, 2001.
[20]Nishida, K. and T. Kurita, ′′Boosting soft-margin SVM with feature selection for pedestrian detection,′′ in Proc. Int. Workshop on Multiple Classifier Systems, Seaside, CA, June.13-15, 2005, vol.13, pp.22-31.
[21]Papageorgiou, C. and T. Poggio, "A trainable system for object detection," Int. Journal of Computer Vision, vol.38, no.1, pp.15-33, 2000.
[22]Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ′′Pedestrian detection using infrared images and histograms of oriented gradients,′′ in Proc. IEEE Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2006, pp.206-212.
[23]Tseng, D.-C., Monocular Computer Vision Aided Road Vehicle Driving for Safety, U.S. Patent, No. 6765480, 2004.
[24]Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995
[25]Viola, P. and M. J. Jones, "Robust real-time object detection," Int. Journal of Computer Vision, vol.57, no.2, pp.37-154, 2001.
[26]Viola, P., M. J. Jones, and D. Snow, "Detecting pedestrians using patterns of motion and appearance," in Proc. IEEE Int. Conf. Computer Vision, Nice, France, Oct.13-16, 2003, pp.734-741.
[27]Viola, P. and M. J. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, vol.57 no.2, pp.137-154, 2004.
[28]Wei, G. and S. Ma, “A complete two-plane camera calibration method and experimental comparisons,” in Proc. of 4th Int. Conf. on Computer Vision, Berlin, Germany, May 11-14, 1993, pp.439-446.
[29]Weng, J., P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.10, pp.965-980, 1992.
[30]Zhang, Z., "A flexible new technique for camera calibration," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.11, pp.1330-1334, 2000.
[31]Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.1491-1498.
[32]內政部統計處,"102年第 24 週內正統計通報 (101 年身心障礙者福利統計) ", June 15, 2013。
[33]內政部營建署,"市區道路人行道建設手冊", April 1, 2006。
指導教授 曾定章(Tseng, Din-Chang) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明