博碩士論文 101523002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.143.4.104
姓名 徐歆茹(Hsin-Ju Hsu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於HEVC畫面內編碼特徵之 影像內容檢索技術
(Content Based Image Retrieval Utilizing HEVC Intra Coding Features)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網路的蓬勃發展以及行動裝置的進步,使用者隨手可得影音資訊,這些多媒體資訊不斷地朝向高品質、高解析度發展,使得影音資料量成指數型成長,因此如何管理龐大的資料庫,並根據使用者的需求取得所需之影像便是一個重要的課題。基於影像內容之檢索技術,雖然發展歷史悠久且被廣泛的討論與研究,但多數的研究皆在原始像素域擷取特徵,必須將影像完全解壓縮後再進行處理,會增加許多計算複雜度以及儲存特徵空間。
本論文針對最新一代視訊壓縮標準HEVC,提出HEVC壓縮域之影像檢索技術,利用HEVC解碼器部分解碼所得之畫面內編碼資訊進行影像檢索。相較於直接使用解碼資訊作直方圖來比對,我們研究HEVC畫面內編碼之特性,將預測模式(intra prediction mode)作濾波處理,並將原本五種不同尺寸的預測單位(Prediction Unit, PU)分為兩組,再搭配其殘餘值(residual)能量之分布,萃取出有效的影像特徵以利檢索。實驗結果顯示,所提出之方法可大幅減少影像特徵的儲存空間,加速系統處理效率,而檢索效能平均準確率(Mean Average Precision, MAP)值為0.247。
摘要(英) With the rapid development of Internet and mobile devices, how to efficiently retrieve multimedia information from huge databases becomes an important issue. In the past decade, numerous algorithms were extensively studied for content based image retrieval. However, most existing works retrieve features in the pixel domain, which requires fully decoding images. It is time consuming and memory wasting to retrieve features in the pixel domain.
This thesis focuses on the content-based image retrieval in compression domain for the new standard, high efficiency video coding (HEVC). The features are extracted from partially decoded intra frames. Instead of directly taking histogram from the decoded information, the directions of intra mode are filtered and the sizes of prediction unit are grouped into two types. And the histogram of residual power is also adopted as a feature. The retrieval efficiency can greatly benefit by the proposed features.
The experimental results show that the proposed method can reduce the resource consumption and achieve a good retrieval performance, i.e. Mean Average Precision (MAP) 0.247 in Oxford 5K dataset.
關鍵字(中) ★ 壓縮域
★ 基於內容影像檢索
★ 畫面內預測
★ HEVC
關鍵字(英) ★ Compression domain
★ Content-based image retrieval
★ Intra prediction
★ HEVC
論文目次 摘 要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 基於內容檢索之相關研究介紹 4
2.1 基於內容之影像檢索簡介 4
2.2 基於內容檢索特徵概述 4
2.2.1 基於色彩特徵之檢索技術 5
2.2.2 基於紋理特徵之檢索技術 6
2.2.3 基於形狀特徵之檢索技術 7
2.3 壓縮域特徵擷取之文獻 8
2.3.1 基於DCT係數為特徵之檢索技術 9
2.3.2 基於霍夫曼表為特徵之檢索技術 11
2.3.3 基於向量量化為特徵之檢索技術 12
2.3.4 基於H.264壓縮域之檢索技術 13
第三章 HEVC視訊編碼介紹 16
3.1 HEVC視訊壓縮標準介紹 16
3.2 HEVC編碼架構 17
3.2.1 編碼單位 (Coding Unit, CU) 18
3.2.2 預測單位 (Predition Unit, PU) 19
3.2.3 轉換單位 (Transform Unit, TU) 20
3.3 畫面內預測 (Intra Prediction) 21
3.4 畫面內預測模式選擇 25
第四章 提出之壓縮域檢索技術 28
4.1 利用預測模式建立區域直方圖之分析 28
4.1.1評比標準MAP 31
4.1.2 HEVC之PU尺寸分析 31
4.1.2 HEVC預測模式之分析 34
4.2 以殘餘值構成之特徵向量 38
4.3 所提出之演算法架構 39
第五章 實驗結果與分析討論 40
5.1 實驗參數與模擬環境 40
5.2 評分機制 42
5.2.1 MAP 42
5.2.2 ANMRR 44
5.3 提出之壓縮域內容檢索技術之結果與分析 45
5.4 HEVC解碼端複雜度分析與資料量評比 50
第六章 結論與未來展望 52
參考文獻 53
參考文獻 [1] Y. Mistry, and D. T. Ingole, “Survey on Content Based Image Retrieval Systems.”
[2] G. Schaefer, “Pixel Domain and Compressed Domain Image Retrieval Features,” 2013 Eighth International Conference on Digital Information Management (ICDIM), pp.1-3, 10-12 Sept. 2013.
[3] M. J. Swain, and D. H. Ballard, “Color Indexing,” International Journal of Computer Vision, pp. 11-32, 1991.
[4] T. Ojala, M. Pietikainen, and D. Harwood, “A Comparative Study of Texture Measures with Classification Based on Feature Distributions,” Pattern Recognition, 29(1):51-59, 1996.
[5] N. P. Doshi, and G. Schaefer, “A Comprehensive Benchmark of Local Binary Pattern Algorithms for Texture Retrieval,” 2012 21st International Conference on Pattern Recognition (ICPR), pp.2760-2763, 11-15 Nov. 2012.
[6] B. H. Shekar, and, B. Pilar, “Shape Representation and Classification through Pattern Spectrum and Local Binary Pattern -- A Decision Level Fusion Approach,” 2014 Fifth International Conference on Signal and Image Processing (ICSIP), pp.218,224, 8-10 Jan. 2014.
[7] Fazal-e-Malik, and B. Baharudim, “Effective Content-Based Image Retrieval: Combination of Quantized Histogram Texture Features in the DCT Domain,” 2012 International Conference on Computer & Information Science (ICCIS), pp.425,430, 12-14 June 2012.
[8] A. Mohamed, F. Khellfi, Y. Weng, and J. Jiang, “An Efficient Image Retrieval through DCT Histogram Quantization,” International Conference on CyberWorlds, 2009. CW ′09. pp.237, 240, 7-11 Sept. 2009.
[9] D. Edmundson, and G. Schaefer, “Fast JPEG Image Retrieval Using Optimised Huffman Tables,” 2012 21st International Conference on Pattern Recognition (ICPR), pp.3188,3191, 11-15 Nov. 2012.
[10] V. R. Khapli, and A. S. Bhalchandra, “Compressed Domain Image Retrieval Using Thumbnails of Images,” 2009. CICSYN ′09. First International Conference on Computational Intelligence, Communication Systems and Networks, pp.392-396, 23-25 July 2009.
[11] F. Zargari, M. Mehrabi, and M. Ghanbari, “Compressed Domain Texture Based Visual Information Retrieval Method for I-frame Coded Pictures,” IEEE Transactions on Consumer Electronics, vol.56, no.2, pp.728-736, May 2010.
[12] R. J. Wang, Y. T. Yang, and P. C. Chang, “Content-Based Image Retrieval Using H.264 Intra Coding Features,” Journal of Visual Communication and Image Representation, vol. 25, no. 5, pp. 963-969, July 2014.
[13] G. J. Sullivan, J. Ohm, Han Woo-Jinm, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.22, no.12, pp.1649,1668, Dec. 2012.
[14] J. Lainema, F. Bossen, Woo-Jin Han, Junghye Min, and K. Ugur,
“Intra Coding of the HEVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.22, no.12, pp.1792,1801, Dec. 2012.
[15] M. Viitanen, J. Vanne, T.D Hamalainen, M. Gabbouj, and J. Lainema, “Complexity Analysis of Next-generation HEVC Decoder,” 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp.882-885, 20-23 May 2012.
[16] L. Zhao, L. Zhang, S. Ma, and D. Zhao, “Fast Mode Decision Algorithm for Intra Prediction in HEVC,” Visual Communications and Image Processing Conference, 2011, pp. 1-4.
[17] Oxford 5k dataset, http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
[18] B. S. Manjunath, J.-R Ohm, V. V. Vasudevan, and A. Yamada, “Color and Texture Descriptors,” IEEE Transactions on Circuits and Systems for Video Technology, vol.11, no.6, pp.703,715, Jun 2001.
[19] F. Pescador, M. Chavarrias, M. Garrido, E. Juarez, and C. Sanz, “Complexity Analysis of an HEVC Decoder based on a Digital Signal Processor,” IEEE Transactions on Consumer Electronics, vol.59, no.2, pp.391-399, May 2013.
[20] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object Retrieval with large Vocabularies and Fast Spatial Matching,” IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ′07. pp.1,8, 17-22, June 2007.
指導教授 張寶基(Pao-Chi Chang) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明