博碩士論文 101581018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.223.203.68
姓名 張效煌(Hsiao-Huang Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用全息希爾伯譜於生理訊號分析
(Biomedical Signal Analysis Using Holo-Hilbert Spectral Analysis)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著工商業發展愈來愈快,人類工作壓力愈來愈大;加上飲食不均衡,罹患心血管疾病的人口愈來愈多。根據2008~2012行政院衛生署統計的國人十大死因,多項死因與心血管疾病有關。近五年臺灣十大死因中,有將近一半的項目為心血管相關疾病;例如心臟病、腦血管疾病、糖尿病、高血壓性疾病以及腎臟方面疾病;另外,心血管相關疾病的死亡人數佔2012臺灣總死亡人數的30.3%,且心臟疾病以及腦血管疾病為心血管相關疾病致死的兩大主因。根據WHO的統計,單是心血管疾病的死亡人數佔2008全球總死亡人數的31%。很多患者都在病況嚴重時才就醫檢查;更何況在很多地區醫療資源嚴重不足。如何在醫院外的居家自我檢查、早期發現心血管有關疾病是一項重要課題。在目前的臨床生命特徵監測儀器中,主要以心電圖、呼吸偵測、血氧偵測、血壓偵測為主,在心電圖與血氧偵測已經有方便連續監控的儀器,但是呼吸偵測與血壓偵測卻沒有方便且連續監測的裝置。本研究開發穿戴式的生命特徵量測裝置,藉由心電圖(ECG)與脈波血容積量測器(PPG)的脈波傳遞速度(PWV)進行連續血壓波估測,並且引用全息希爾伯譜分析法(HHSA)經由手腕的脈波血容積量測器推測連續呼吸的數值。本研究所開發的裝置將來可以連續的紀錄受試者的生命特徵,將來可以應用這些獲得的生命特徵推估其他的生物指標預防心血管疾病。
摘要(英) With the rapid developments of industrial society, heavy work load and irregular dietary can cause risky factors of cardiovascular diseases for people. According to the survey reported by department of health, Executive Yuan in Taiwan, most leading causes (~30.3%) of death during year 2008 ~2012 were related to cardiovascular disease. In addition, about half of the leading causes of death, such as heart disease, cerebrovascular disease, diabetes, hypertension, kidney disease, etc., in Taiwan, are all related to cardiovascular diseases. Besides, in accordance with the survey of World Health Organization (WHO) in 2008, ~31% of fatality rate in the world was related to cardiovascular diseases. Many patients consult doctors and have physical examinations only when conditions are serious, not to mention that people cannot detect their diseases by means of physical self-examinations, because of a severe shortage of medical supports in many districts. Therefore, how to achieve self-examinations at home and implement early detections of cardiovascular related diseases is an important issue. Current clinical monitoring systems measures electrocardiogram (ECG), respiration, blood oxygen, and blood pressure. Among the four vital signs, instruments for continuously monitoring of ECG and blood oxygen have been developed. Nevertheless, continuous recording system for long-term monitoring of respiration and blood pressure have not been developed yet. Accordingly, this study aims to develop convenient wearable devices for continuous monitoring of blood pressure and respiration. For blood pressure, we utilized the pulse wave velocity (PWV) measured from the time difference between ECG and PPG to estimate continuous blood pressure. Regarding respiration, the Holo-Hilbert Spectral Analysis (HHSA) was adopted to transform wrist PPG signals into Holo-Hilbert spectrum, so that the respiration rate can be found from the modulation frequency in Holo-Hilbert spectrum. The study results of this thesis propose a prototype form continuous monitoring of blood pressure and respiration, and the vital signs recorded from the proposed system might be able to derive new biomarker for early detection of cardiovascular diseases.
關鍵字(中) ★ 穿戴式裝置
★ 心血管疾病
★ 全息希爾伯譜分析法
關鍵字(英) ★ Wearable Device
★ Cardiovascular Disease
★ Holo-Hilbert Spectral Analysis
論文目次 Contents
Pages
論文摘要.................................................................................ii
Abstract................................................................................iii
List of Figures........................................................................v
List of Tables........................................................................vii

Chapter 1 Introduction...........................................................1
Chapter 2 Materials and Methods..........................................9
2.1 Electrocardiogram (ECG) and photoplethy-smography
(PPG) systems.............................................................9
2.2 Hilbert-Huang Transfrom (HHT)................................10
2.3 Holo-Hilbert Spectral Analysis (HHSA) for respiration
detection....................................................................12
Chapter 3 Cuffless Blood Pressure Estimation using Pulse-Transit Time (PTT).................................................................16
Chapter 4 Respiration Estimation using Holo-Hilbert Spectral Analysis (HHSA)....................................................................21
Chapter 5 Conclusions and Future Works.............................38
References............................................................................40
參考文獻 [1] C. C. Burt and J. E. Arrowsmith, "Respiratory failure," Surgery (Oxford), vol. 27, no. 11, pp. 475-479 %@ 0263-9319, 2009.
[2] A. Tulaimat, A. Patel, M. Wisniewski, and R. Gueret, "The validity and reliability of the clinical assessment of increased work of breathing in acutely ill patients," Journal of critical care, vol. 34, pp. 111-115 %@ 0883-9441, 2016.
[3] N. M. Punjabi, "The epidemiology of adult obstructive sleep apnea," Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 136-143 %@ 1546-3222, 2008.
[4] J. A. Luis et al., "Design and implementation of a smart sensor for respiratory rate monitoring," Sensors, vol. 14, no. 2, pp. 3019-3032, 2014.
[5] R. D. Allison, E. L. Holmes, and J. Nyboer, "Volumetric dynamics of respiration as measured by electrical impedance plethysmography," Journal of applied physiology, vol. 19, no. 1, pp. 166-173 %@ 8750-7587, 1964.
[6] K. Ashutosh, R. Gilbert, J. H. Auchincloss, J. Erlebacher, and D. Peppi, "Impedance pneumograph and magnetometer methods for monitoring tidal volume," Journal of applied physiology, vol. 37, no. 6, pp. 964-966 %@ 8750-7587, 1974.
[7] F.-T. Wang, H.-L. Chan, C.-L. Wang, H.-M. Jian, and S.-H. Lin, "Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition," Sensors, vol. 15, no. 7, pp. 16372-16387, 2015.
[8] X. Li, D. Qiao, Y. Li, and H. Dai, "A novel through-wall respiration detection algorithm using uwb radar," in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 1013-1016: IEEE.
[9] B. A. Reyes, N. Reljin, Y. Kong, Y. Nam, and K. H. Chon, "Tidal volume and instantaneous respiration rate estimation using a volumetric surrogate signal acquired via a smartphone camera," IEEE journal of biomedical and health informatics, vol. 21, no. 3, pp. 764-777, 2017.
[10] Y. Xin, X. Qi, C. Qian, H. Tian, Z. Ling, and Z. Jiang, "A Wearable Respiration and Pulse Monitoring System Based on PVDF Piezoelectric Film," Integrated Ferroelectrics, vol. 158, no. 1, pp. 43-51, 2014.
[11] G. B. Moody et al., "Clinical validation of the ECG-derived respiration (EDR) technique," Group, vol. 1, no. 3, 1986.
[12] L. G. Lindberg, H. Ugnell, and P. Öberg, "Monitoring of respiratory and heart rates using a fibre-optic sensor," Medical and Biological Engineering and Computing, vol. 30, no. 5, pp. 533-537 %@ 0140-0118, 1992.
[13] K. Nakajima, T. Tamura, and H. Miike, "Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique," Medical engineering & physics, vol. 18, no. 5, pp. 365-372 %@ 1350-4533, 1996.
[14] H. Kim, J.-Y. Kim, and C.-H. Im, "Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography," Sensors, vol. 16, no. 9, p. 1494, 2016.
[15] J. Lázaro, Y. Nam, E. Gil, P. Laguna, and K. H. Chon, "Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals," Physiological measurement, vol. 36, no. 11, p. 2317, 2015.
[16] J. Lee and K. H. Chon, "Time-varying autoregressive model-based multiple modes particle filtering algorithm for respiratory rate extraction from pulse oximeter," IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 790-794, 2011.
[17] J. P. Dieffenderfer et al., "Wearable wireless sensors for chronic respiratory disease monitoring," 2015, pp. 1-6 %@ 1467372013: IEEE.
[18] N. E. Almond and E. D. Cooke, "Observations on the photoplethysmograph pulse derived from a laser Doppler flowmeter," Clinical Physics and Physiological Measurement, vol. 10, no. 2, pp. 137 %@ 0143-0815, 1989.
[19] A. V. J. Challoner, "Photoelectric plethysmography for estimating cutaneous blood flow," Non-invasive physiological measurements, vol. 1, pp. 125-151, 1979.
[20] J. C. Dorlas and J. A. Nijboer, "PHOTO-ELECTRIC PLETHYSMOGRAPHY AS A MONITORING DEVICE IN ANAESTHESIA Application and Interpretation," British journal of anaesthesia, vol. 57, no. 5, pp. 524-530 %@ 0007-0912, 1985.
[21] A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, "Skin photoplethysmography—a review," Computer methods and programs in biomedicine, vol. 28, no. 4, pp. 257-269 %@ 0169-2607, 1989.
[22] J. Penaz, "Mayer waves: history and methodology," Automedica, vol. 2, no. 3, pp. 135-142, 1978.
[23] A. Colantuoni, S. Bertuglia, and M. Intaglietta, "Quantitation of rhythmic diameter changes in arterial microcirculation," American Journal of Physiology-Heart and Circulatory Physiology, vol. 246, no. 4, pp. H508-H517 %@ 0363-6135, 1984.
[24] N. E. Huang, M.-T. Lo, W. U. Zhao-Hua, and C. Xian-Yao, "Method for quantifying and modeling degree of nonlinearity, combined nonlinearity, and nonstationarity," ed: Google Patents, 2014.
[25] N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," 1998, vol. 454, pp. 903-995 %@ 1364-5021: The Royal Society.
[26] M. Blanco-Velasco, B. Weng, and K. E. Barner, "ECG signal denoising and baseline wander correction based on the empirical mode decomposition," Computers in biology and medicine, vol. 38, no. 1, pp. 1-13 %@ 0010-4825, 2008.
[27] Z.-F. Liu, Z.-P. Liao, and E.-F. Sang, "Speech enhancement based on Hilbert-Huang transform," 2005, vol. 8, pp. 4908-4912 %@ 0780390911: IEEE.
[28] P. A. Hwang, N. E. Huang, and D. W. Wang, "A note on analyzing nonlinear and nonstationary ocean wave data," Applied Ocean Research, vol. 25, no. 4, pp. 187-193 %@ 0141-1187, 2003.
[29] K. T. Coughlin and K.-K. Tung, "11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method," Advances in space research, vol. 34, no. 2, pp. 323-329 %@ 0273-1177, 2004.
[30] B. Prathyusha, T. S. Rao, and D. Asha, "Extraction of respiratory rate from PPG signals using PCA and EMD," International Journal of Research in Engineering and Technology, vol. 1, no. 2, pp. 164-184, 2012.
[31] N. E. Huang et al., "On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data," Phil. Trans. R. Soc. A, vol. 374, no. 2065, pp. 20150206 %@ 1364-503X, 2016.
[32] P. S. Addison, J. N. Watson, M. L. Mestek, and R. S. Mecca, "Developing an algorithm for pulse oximetry derived respiratory rate (RRoxi): a healthy volunteer study," Journal of clinical monitoring and computing, vol. 26, no. 1, pp. 45-51 %@ 1387-1307, 2012.
[33] E. Marey, "Physiologie Experimentale, ii, 74," 1876.
[34] T. Pereira, C. Correia, and J. Cardoso, "Novel methods for pulse wave velocity measurement," Journal of medical and biological engineering, vol. 35, no. 5, pp. 555-565, 2015.
[35] A. F. Pacela, "Impedance pneumography—A survey of instrumentation techniques," Medical and biological engineering, vol. 4, no. 1, pp. 1-15, 1966.
[36] K. Pilt, K. Meigas, R. Ferenets, K. Temitski, and M. Viigimaa, "Photoplethysmographic signal waveform index for detection of increased arterial stiffness," Physiological measurement, vol. 35, no. 10, p. 2027, 2014.
[37] J. M. Bland and D. Altman, "Statistical methods for assessing agreement between two methods of clinical measurement," The lancet, vol. 327, no. 8476, pp. 307-310 %@ 0140-6736, 1986.
[38] A. I. Krupatkin, "Blood flow oscillations at a frequency of about 0.1 Hz in skin microvessels do not reflect the sympathetic regulation of their tone," Human physiology, vol. 35, no. 2, pp. 183-191 %@ 0362-1197, 2009.
[39] A. Sobron, I. Romero, and T. Lopetegi, "Evaluation of methods for estimation of respiratory frequency from the ECG," in Computing in Cardiology, 2010, 2010, pp. 513-516: IEEE.
[40] A. E. Awodeyi, S. R. Alty, and M. Ghavami, "Median Based Method for Baseline Wander Removal in Photoplethysmogram Signals," in Bioinformatics and Bioengineering (BIBE), 2014 IEEE International Conference on, 2014, pp. 311-314: IEEE.
[41] K. Duan, Y. Hu, Z. Qian, and G. Wang, "An FPGA-based morphological filter for baseline wandering correction in photoplethysmography," in Biomedical Circuits and Systems Conference (BioCAS), 2016 IEEE, 2016, pp. 216-219: IEEE.
[42] A. K. Bhoi, K. S. Sherpa, J. S. Tamang, D. Phurailatpam, and A. K. Gupta, "Real time acquisition and analysis of PCG and PPG signals," in Communications and Signal Processing (ICCSP), 2015 International Conference on, 2015, pp. 0062-0065: IEEE.
[43] K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, "Ganong’s review of medical physiology. 23," NY: McGraw-Hill Medical, 2009.
[44] L. Nilsson, T. Goscinski, S. Kalman, L. G. Lindberg, and A. Johansson, "Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects," Acta Anaesthesiologica Scandinavica, vol. 51, no. 9, pp. 1250-1257 %@ 1399-6576, 2007.
[45] P. D. Larsen, M. Harty, M. Thiruchelvam, and D. C. Galletly, "Spectral analysis of AC and DC components of the pulse photoplethysmograph at rest and during induction of anaesthesia," International journal of clinical monitoring and computing, vol. 14, no. 2, pp. 89-95 %@ 0167-9945, 1997.
[46] L. Bernardi et al., "Autonomic control of skin microvessels: assessment by power spectrum of photoplethysmographic waves," Clinical science, vol. 90, no. 5, pp. 345-355 %@ 0143-5221, 1996.
[47] Y. Mendelson and B. D. Ochs, "Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography," IEEE Transactions on Biomedical Engineering, vol. 35, no. 10, pp. 798-805 %@ 0018-9294, 1988.
[48] V. Lesauskaite and M. J. Ebejer, "Age-related changes in the respiratory system," 1999.
[49] E. K. Verbeken, M. Cauberghs, I. Mertens, J. Clement, J. M. Lauweryns, and K. P. Van de Woestijne, "The senile lung: comparison with normal and emphysematous lungs 1. Structural aspects," Chest, vol. 101, no. 3, pp. 793-799 %@ 0012-3692, 1992.
[50] E. Puchelle, J. M. Zahm, and A. Bertrand, "Influence of age on bronchial mucociliary transport," Scandinavian journal of respiratory diseases, vol. 60, no. 6, pp. 307-313 %@ 0036-5572, 1979.
[51] P. J. Gallagher and A. C. van der Wal, "Histology for pathologists," in Blood vessels, ed: Raven New York, 1997, pp. 763-83.
[52] M. Ermini, "Ageing changes in mammalian skeletal muscle," Gerontology, vol. 22, no. 4, pp. 301-316 %@ 0304-324X, 1976.
[53] D. D. Peterson and A. P. Fishman, "The lungs in later life," Pulmonary disease and disorders: update, vol. 1, pp. 123-36, 1982.
[54] N. B. Pride, "Pulmonary distensibility in age and disease," Bulletin de physio-pathologie respiratoire, vol. 10, no. 1, pp. 103-108 %@ 0007-439X, 1973.
[55] D. L. Sherrill, M. D. Lebowitz, R. J. Knudson, and B. Burrows, "Smoking and Symptom Effects on the Curves of Lung Function Growth and Decline1-3," 1991.
[56] J. P. McFadden, R. C. Price, H. D. Eastwood, and R. S. Briggs, "Raised respiratory rate in elderly patients: a valuable physical sign," Br Med J (Clin Res Ed), vol. 284, no. 6316, pp. 626-627 %@ 0267-0623, 1982.
[57] M. P. Tulppo, T. H. Mäkikallio, T. Seppänen, R. T. Laukkanen, and H. V. Huikuri, "Vagal modulation of heart rate during exercise: effects of age and physical fitness," American Journal of Physiology-Heart and Circulatory Physiology, vol. 274, no. 2, pp. H424-H429, 1998.
[58] C. D. B. Luft and J. Bhattacharya, "Aroused with heart: modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates," Scientific reports, vol. 5, p. 15717, 2015.
[59] B. T. Paul, I. C. Bruce, D. J. Bosnyak, D. C. Thompson, and L. E. Roberts, "Modulation of electrocortical brain activity by attention in individuals with and without tinnitus," Neural plasticity, vol. 2014, 2014.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2019-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明