博碩士論文 101581601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:44.210.85.190
姓名 蘇虹娜(Kalpana Settu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於生醫的微製作與網印電化學感測器
(Microfabricated and Screen-printed Electrochemical Sensors for Biomedical Applications)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究發展電化學生物感測器,所使用的技術包括微製造和網印這兩種製造方法。這些感測器將應用在生物醫學上,如監控致病菌與檢測疾病的生物標記。
本研究的微製造感測器是在玻璃基板上製造的指叉金微電極感測器,將用以檢測人體尿液中與牛奶樣品中的大腸桿菌。在細菌生長的期間,頻率範圍1 Hz到1 MHz的電化學阻抗譜測量,據以進行等效電路分析,從而推論出大腸桿菌的生長所引起電極表面之電雙層電容值的改變是阻抗變化的主因。在人體尿液檢測上,細菌生長期間由於會形成細菌生物膜累積在感測器表面上而產生阻抗變化。尿液中大腸桿菌的濃度可以靠著在細菌開始成長後的某一時間點測量在某一指定頻率之阻抗值然後對照在該時間點的校正曲線而得知。在牛奶檢測上,阻抗譜上可以觀察到阻抗值因大腸桿菌增生而降低的現象,這是由於牛奶中細菌代謝引起離子的濃度變化所致。建立阻抗降低10%所需的時間相對於細菌濃度的校正曲線,牛奶中大腸桿菌的濃度可以靠著測量10%阻抗變化的時間而得知。
本研究的網印感測器是以碳為電極材料,將用於白蛋白與EN2蛋白的檢測。若用於檢測尿液中微量白蛋白,首先使用共價鍵固定法將人體白蛋白抗體固定在網印感測器表面,然後採用免疫反應測定原理,以計時電流法的電化學技術來對尿液中的白蛋白做定量檢測。為了要檢測尿液中的EN2蛋白,石墨烯被加入網印碳電極中以提高靈敏度;首先在網印石墨烯碳電極表面修飾接上能與EN2蛋白做特異性結合的單股DNA,然後採用循環伏安法來定量EN2蛋白的濃度。
摘要(英) This study focused on the development of electrochemical biosensors for biomedical applications, such as pathogenic bacteria monitoring and disease biomarker detection. Two methods were utilized for the fabrication of these sensors, namely the microfabrication and screen-printing techniques.
The microfabricated biosensors were interdigitated gold microelectrode sensors designed and microfabricated on glass substrate for E. coli bacterial detection in human urine and cow milk samples. Electrochemical impedance spectroscopic measurements were carried out during bacterial growth over a frequency range of 1 Hz to 1 MHz. Based on equivalent circuit analysis, it was inferred that double layer capacitance was responsible for the impedance change caused by the E. coli growth. In human urine, the change in impedance during bacterial growth was due to formation and accumulation of bacterial biofilms on the sensor surface. The urinary E. coli concentration could be determined from the calibration curve at a specific frequency with a selected growth time. In cow milk, during E. coli growth, a decrease in impedance was observed due to the ionic concentration change in the milk caused by bacterial metabolism. The E. coli concentration in milk could be determined from the calibration curve of the bacterial concentration with respect to the time when the impedance changed by 10%.
The screen-printed biosensors were carbon-based sensors for albumin and EN2 protein detection. For the detection of microalbumin in urine, anti-human albumin antibodies were immobilized on the screen-printed sensor surface by the covalent immobilization method. Then the immunoassay was achieved by quantitating the albumin in urine with the chronoamperometric (CA) electrochemical measurement technique. For the detection of EN2 protein in urine, graphene was incorporated in the screen-printed carbon electrode to enhance the detection sensitivity. The screen-printed carbongraphene sensor surface was modified with DNA strand which is specific to EN2 protein binding. Cyclic voltammetry measurement was employed for the quantitative detection of EN2 protein concentration.
關鍵字(中) ★ 大腸桿菌
★ 生物傳感器
★ 微細加工
★ 絲網印刷
★ 電化學
★ 蛋白
★ 免疫反應測定
關鍵字(英) ★ Immunoassay
★ Biosensors
★ Microfabrication
★ Screen-printing
★ Electrochemical
★ Escherichia coli
★ Protein
論文目次 ABSTRACT I
摘要 II
ACKNOWLEDGEMENT III
Contents IV
List of Figures VII
List of Tables IX
CHAPTER 1: Introduction 1
1.1 Biosensors 1
1.1.1 Electrochemical biosensors 6
1.1.2 Electrochemical techniques 7
1.2 Sensor fabrication techniques 17
1.2.1 Microfabrication 17
1.2.2 Screen-printing 23
1.3 Summary and Objectives of this Study 25
1.4 Organization of this dissertation 26
CHAPTER 2: Impedimetric Method for Measuring Ultra-low E. coli Concentrations in Human Urine 27
2.1 Abstract 27
2.2 Introduction 27
2.3 Materials and methods 30
2.3.1 Chemicals and reagents 30
2.3.2 Sensor fabrication and experimental setup 30
2.3.3 Bacterial culture and impedance measurement 32
2.3.4 Bacterial urine sample preparation 32
2.3.4 Scanning electron microscopy (SEM) 33
2.4 Results and discussion 33
2.4.1 Impedance response of E. coli in urine 33
2.4.2 Monitoring of E. coli growth in urine 34
2.4.3 Equivalent circuit analysis for impedance measurement system 37
2.4.4 Detection of E. coli in urine samples 43
2.5 Summary 46
Chapter 3: Impedance Sensor for Rapid Enumeration of E. coli in Milk Samples 48
3.1 Abstract 48
3.2 Introduction 48
3.3 Materials and methods 52
3.3.1 Chemicals and reagents 52
3.3.2 Fabrication of gold interdigitated microelectrode on glass substrate 52
3.3.3 Bacterial culture 53
3.3.4 Spiked milk sample preparation 55
3.3.5 Impedance measurement 55
3.4 Results and discussion 55
3.4.1 Characterization of interdigitated microelectrode sensor 55
3.4.2 Impedance analysis of E. coli growth in milk samples 57
3.4.3 Quantification of E. coli in milk samples 62
3.5 Summary 66
Chapter 4: Screen-Printed Carbon Electrode-based Electrochemical Immunosensor for Rapid Detection of Microalbuminuria 67
4.1 Abstract 67
4.2 Introduction 67
4.3 Materials and methods 70
4.3.1 Reagents 70
4.3.2 Fabrication of screen-printed carbon paste electrodes (SPCE) 70
4.3.3 Immobilization of anti-HSA antibody on the SPCE 71
4.3.4 Surface morphology and composition analysis 71
4.3.5 Electrochemical measurements 71
4.3.6 Human urine samples preparation and analysis 72
4.4 Results and discussion 72
4.4.1 Characterization of SPCE electrodes 72
4.4.2 Characterization of SPCE electrodes 74
4.4.3 Optimization of antibody immobilization and antigen binding times 78
4.4.4 Interference study 80
4.4.5 Detection of HSA 81
4.4.6 Application of optimum immunosensor for the determination of microalbuminuria in human 83
4.5 Summary 85
Chapter 5: Development of Screen-printed Carbon/Graphene-based DNA Biosensor for EN2 Protein Detection 86
5.1 Abstract 86
5.2 Introduction 86
5.3 Materials and methods 88
5.3.1 Reagents 88
5.3.2 Fabrication of screen-printed carbon graphene electrodes (SPCGE) 89
5.3.3 Immobilization of DNA on the SPCGE 89
5.3.4 Surface morphology and composition analysis 90
5.3.5 Electrochemical measurements 90
5.3.6 Electrochemical detection of EN2 protein 90
5.4 Results and discussion 90
5.4.1 Characterization of DNA immobilization 91
5.4.2 Optimization of sensing conditions 94
5.4.2 EN2 protein detection 99
5.5 Summary 101
CHAPTER 6: Conclusion and Future Work 102
6.1 Conclusion 102
6.1. Future work 103
References 104
Appendix 114
參考文獻 References
[1] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, "Electrochemical biosensors: recommended definitions and classification", Biosensors and Bioelectronics, Vol 16. pp. 121-131, 2001.
[2] L. Qlark Jr, "Monitor and control of blood and tissue oxygen tensions", ASAIO Journal, Vol 2. pp. 41-48, 1956.
[3] L.C. Clark, C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery", Annals of the New York Academy of sciences, Vol 102. pp. 29-45, 1962.
[4] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, "Electrochemical biosensors: recommended definitions and classification", Pure and Applied Chemistry, Vol 71. pp. 2333-2348, 1999.
[5] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, "Immobilization strategies to develop enzymatic biosensors", Biotechnology advances, Vol 30. pp. 489-511, 2012.
[6] E. Lojou, P. Bianco, "Application of the electrochemical concepts and techniques to amperometric biosensor devices", Journal of Electroceramics, Vol 16. pp. 79-91, 2006.
[7] A. Collings, F. Caruso, "Biosensors: recent advances", Reports on Progress in Physics, Vol 60. pp. 1397, 1997.
[8] D. Brady, J. Jordaan, "Advances in enzyme immobilisation", Biotechnology Letters, Vol 31. pp. 1639-1650, 2009.
[9] V.M. Mirsky, Ultrathin electrochemical chemo-and biosensors: technology and performance, Springer Science & Business Media2013.
[10] M.S. Wilson, "Electrochemical immunosensors for the simultaneous detection of two tumor markers", Analytical chemistry, Vol 77. pp. 1496-1502, 2005.
[11] P. D′Orazio, "Biosensors in clinical chemistry", Clinica Chimica Acta, Vol 334. pp. 41-69, 2003.
[12] J. Janata, Principles of chemical sensors, Springer Science & Business Media2010.
[13] P.B. Luppa, L.J. Sokoll, D.W. Chan, "Immunosensors—principles and applications to clinical chemistry", Clinica Chimica Acta, Vol 314. pp. 1-26, 2001.
[14] D. Grieshaber, R. MacKenzie, J. Voeroes, E. Reimhult, "Electrochemical biosensors-sensor principles and architectures", Sensors, Vol 8. pp. 1400-1458, 2008.
[15] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, "Electrochemical biosensors", Chemical Society Reviews, Vol 39. pp. 1747-1763, 2010.
[16] A.C. Michael, L. Borland, Electrochemical methods for neuroscience, CRC Press2006.
[17] S. Brosel-Oliu, N. Uria, N. Abramova, A. Bratov, "Impedimetric Sensors for Bacteria Detection", Vol pp., 2015.
[18] E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, John Wiley & Sons2005.
[19] F. Lisdat, D. Schäfer, "The use of electrochemical impedance spectroscopy for biosensing", Analytical and bioanalytical chemistry, Vol 391. pp. 1555-1567, 2008.
[20] L. Yang, R. Bashir, "Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria", Biotechnology advances, Vol 26. pp. 135-150, 2008.
[21] A. Ahmed, J.V. Rushworth, N.A. Hirst, P.A. Millner, "Biosensors for whole-cell bacterial detection", Clinical microbiology reviews, Vol 27. pp. 631-646, 2014.
[22] C. Berggren, B. Bjarnason, G. Johansson, "Capacitive biosensors", Electroanalysis, Vol 13. pp. 173-180, 2001.
[23] A. Bratov, N. Abramova, M.P. Marco, F. Sanchez‐Baeza, "Three‐Dimensional Interdigitated Electrode Array as a Tool for Surface Reactions Registration", Electroanalysis, Vol 24. pp. 69-75, 2012.
[24] S.M. Sze, Semiconductor devices: physics and technology, John Wiley & Sons2008.
[25] J. Voldman, M.L. Gray, M.A. Schmidt, "Microfabrication in biology and medicine", Annual review of biomedical engineering, Vol 1. pp. 401-425, 1999.
[26] R. Behrisch, H.H. Andersen, Sputtering by particle bombardment, Springer-Verlag1991.
[27] Oxford Vacuum Science. Sputter Deposition. http://www.oxfordvacuum.com/background/thin_film/sputtering.htm.
[28] Wikibooks. Microtechnology/Additive Processes. http://en.wikibooks.org/wiki/Microtechnology/Additive_Processes.
[29] G. Zhao, F. Xing, S. Deng, "A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/Nano-Au membrane and screen-printed electrode", Electrochemistry communications, Vol 9. pp. 1263-1268, 2007.
[30] O.D. Renedo, M. Alonso-Lomillo, M.A. Martínez, "Recent developments in the field of screen-printed electrodes and their related applications", Talanta, Vol 73. pp. 202-219, 2007.
[31] S. Timur, L. Della Seta, N. Pazarlioǧlu, R. Pilloton, A. Telefoncu, "Screen printed graphite biosensors based on bacterial cells", Process Biochemistry, Vol 39. pp. 1325-1329, 2004.
[32] N. White, J. Turner, "Thick-film sensors: past, present and future", Measurement Science and Technology, Vol 8. pp. 1, 1997.
[33] E.C. Alocilja, S.M. Radke, "Market analysis of biosensors for food safety", Biosensors & bioelectronics, Vol 18. pp. 841-846, 2003.
[34] S. Chemburu, E. Wilkins, I. Abdel-Hamid, "Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles", Biosensors and Bioelectronics, Vol 21. pp. 491-499, 2005.
[35] C.M. Kunin, Detection, Prevention, and Management of Urinary Tract Infections, Lea & Febiger1987.
[36] A. Arredondo, B. Dorval, A. Klibanov, K. Lewis, "Rapid immunodetection of Escherichia coli", Biotechnology Letters, Vol 22. pp. 547-550, 2000.
[37] B. Foxman, "The epidemiology of urinary tract infection", Nature reviews. Urology, Vol 7. pp. 653-660, 2010.
[38] B. Foxman, "Recurring urinary tract infection: incidence and risk factors", American journal of public health, Vol 80. pp. 331-333, 1990.
[39] V. Hancock, L. Ferrieres, P. Klemm, "Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains", FEMS microbiology letters, Vol 267. pp. 30-37, 2007.
[40] E. Brzuszkiewicz, H. Bruggemann, H. Liesegang, M. Emmerth, T. Olschlager, G. Nagy, K. Albermann, C. Wagner, C. Buchrieser, L. Emody, G. Gottschalk, J. Hacker, U. Dobrindt, "How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains", Proceedings of the National Academy of Sciences of the United States of America, Vol 103. pp. 12879-12884, 2006.
[41] A.V. Franco, "Recurrent urinary tract infections", Best practice & research. Clinical obstetrics & gynaecology, Vol 19. pp. 861-873, 2005.
[42] W.J. McIsaac, R. Moineddin, S. Ross, "Validation of a decision aid to assist physicians in reducing unnecessary antibiotic drug use for acute cystitis", Archives of internal medicine, Vol 167. pp. 2201-2206, 2007.
[43] K.E. Mach, P.K. Wong, J.C. Liao, "Biosensor diagnosis of urinary tract infections: a path to better treatment?", Trends in pharmacological sciences, Vol 32. pp. 330-336, 2011.
[44] J. Eisenstadt, J.A. Washington, Diagnostic microbiology for bacteria and yeasts causing urinary tract infections., ASM Press. Washington DC1996.
[45] W.L. Devillé, J.C. Yzermans, N.P. van Duijn, P.D. Bezemer, D.A. van der Windt, L.M. Bouter, "The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy", BMC Urol, Vol 4. pp. 1-14, 2004.
[46] S. Jolkkonen, E.L. Paattiniemi, P. Karpanoja, H. Sarkkinen, "Screening of urine samples by flow cytometry reduces the need for culture", Journal of clinical microbiology, Vol 48. pp. 3117-3121, 2010.
[47] B. Pieretti, P. Brunati, B. Pini, C. Colzani, P. Congedo, M. Rocchi, R. Terramocci, "Diagnosis of bacteriuria and leukocyturia by automated flow cytometry compared with urine culture", Journal of clinical microbiology, Vol 48. pp. 3990-3996, 2010.
[48] D.S. Schwartz, J.E. Barone, "Correlation of urinalysis and dipstick results with catheter-associated urinary tract infections in surgical ICU patients", Intensive care medicine, Vol 32. pp. 1797-1801, 2006.
[49] U. Eigner, A. Schmid, U. Wild, D. Bertsch, A.M. Fahr, "Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems", Journal of clinical microbiology, Vol 43. pp. 3829-3834, 2005.
[50] K.S. Thomson, N.E. Cornish, S.G. Hong, K. Hemrick, C. Herdt, E.S. Moland, "Comparison of Phoenix and VITEK 2 extended-spectrum-beta-lactamase detection tests for analysis of Escherichia coli and Klebsiella isolates with well-characterized beta-lactamases", Journal of clinical microbiology, Vol 45. pp. 2380-2384, 2007.
[51] J.S. Daniels, N. Pourmand, "Label-Free Impedance Biosensors: Opportunities and Challenges", Electroanalysis, Vol 19. pp. 1239-1257, 2007.
[52] C.M. Ruan, H. Wang, Y. Li, A bienzyme electrochemical biosensor coupled with immunomagnetic separation for rapid detection of Escherichia coli O157:H7 in food samples, Trans. ASAE, 2002, pp. 249–255.
[53] M. Varshney, L. Yang, X.L. Su, Y. Li, "Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef", Journal of food protection, Vol 68. pp. 1804-1811, 2005.
[54] C. Ercole, M. Del Gallo, L. Mosiello, S. Baccella, A. Lepidi, "Escherichia coli detection in vegetable food by a potentiometric biosensor", Sensors and Actuators B: Chemical, Vol 91. pp. 163-168, 2003.
[55] Z. Muhammad-Tahir, E.C. Alocilja, "A conductometric biosensor for biosecurity", Biosensors & bioelectronics, Vol 18. pp. 813-819, 2003.
[56] M. Varshney, Y. Li, "Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium", Talanta, Vol 74. pp. 518-525, 2008.
[57] E. Katz, I. Willner, "Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors", Electroanalysis, Vol 15. pp. 913-947, 2003.
[58] D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, "Biosensors for detection of pathogenic bacteria", Biosensors and Bioelectronics, Vol 14. pp. 599-624, 1999.
[59] D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, S. Stricker, "Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria", Electroanalysis, Vol 12. pp. 317-325, 2000.
[60] I.O. K′Owino, O.A. Sadik, "Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring", Electroanalysis, Vol 17. pp. 2101-2113, 2005.
[61] L.L. Hause, R.A. Komorowski, F. Gayon, "Electrode and electrolyte impedance in the detection of bacterial growth", IEEE transactions on bio-medical engineering, Vol 28. pp. 403-410, 1981.
[62] C.J. Felice, M.E. Valentinuzzi, M.I. Vercellone, R.E. Madrid, "Impedance bacteriometry: medium and interface contributions during bacterial growth", IEEE transactions on bio-medical engineering, Vol 39. pp. 1310-1313, 1992.
[63] C.J. Felice, M.E. Valentinuzzi, "Medium and interface components in impedance microbiology", IEEE transactions on bio-medical engineering, Vol 46. pp. 1483-1487, 1999.
[64] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, "Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures", Biosensors & bioelectronics, Vol 12. pp. 29-41, 1997.
[65] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, B. Wolf, "On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures", Medical & biological engineering & computing, Vol 36. pp. 365-370, 1998.
[66] L. Yang, Y. Li, "Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation", Journal of Microbiological Methods, Vol 64. pp. 9-16, 2006.
[67] L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, "Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium", Biosensors & bioelectronics, Vol 19. pp. 1139-1147, 2004.
[68] A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, B. Rezaei, "Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples", Colloids and surfaces. B, Biointerfaces, Vol 87. pp. 480-488, 2011.
[69] J. Paredes, S. Becerro, F. Arizti, A. Aguinaga, J.L. Del Pozo, S. Arana, "Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates", Sensors and Actuators B: Chemical, Vol 178. pp. 663-670, 2013.
[70] F.T. Fischbach, M.B. Dunning, Chapter-3, A Manual of Laboratory and Diagnostic Tests, Lippincott Williams & Wilkins2009.
[71] D. Roberts, The electrical impedance of human urine, 1980.
[72] X. Muñoz-Berbel, N. Vigués, J. Mas, A.T.A. Jenkins, F.J. Muñoz, "Impedimetric characterization of the changes produced in the electrode–solution interface by bacterial attachment", Electrochemistry Communications, Vol 9. pp. 2654-2660, 2007.
[73] R. Gómez, R. Bashir, A.K. Bhunia, "Microscale electronic detection of bacterial metabolism", Sensors and Actuators B: Chemical, Vol 86. pp. 198-208, 2002.
[74] M. Varshney, Y. Li, "Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells", Biosensors and Bioelectronics, Vol 24. pp. 2951-2960, 2009.
[75] M.G. Blango, M.A. Mulvey, "Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics", Antimicrobial agents and chemotherapy, Vol 54. pp. 1855-1863, 2010.
[76] S. Chambers, C.M. Kunin, "The osmoprotective properties of urine for bacteria: the protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea", The Journal of infectious diseases, Vol 152. pp. 1308-1316, 1985.
[77] D.G. Davies, G.G. Geesey, "Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture", Applied and environmental microbiology, Vol 61. pp. 860-867, 1995.
[78] H.P. Erickson, "Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy", Biological procedures online, Vol 11. pp. 32-51, 2009.
[79] V. Thongboonkerd, K.R. McLeish, J.M. Arthur, J.B. Klein, "Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation", Kidney international, Vol 62. pp. 1461-1469, 2002.
[80] G. Reshes, S. Vanounou, I. Fishov, M. Feingold, "Cell shape dynamics in Escherichia coli", Biophysical journal, Vol 94. pp. 251-264, 2008.
[81] M. Dweik, R.C. Stringer, S.G. Dastider, Y. Wu, M. Almasri, S. Barizuddin, "Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies", Talanta, Vol 94. pp. 84-89, 2012.
[82] J. Paredes, S. Becerro, S. Arana, "Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes", Journal of Microbiological Methods, Vol 100. pp. 77-83, 2014.
[83] O. Laczka, E. Baldrich, F.X. Munoz, F.J. del Campo, "Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors: the importance of transducer geometry", Analytical chemistry, Vol 80. pp. 7239-7247, 2008.
[84] S. Kim, G. Yu, T. Kim, K. Shin, J. Yoon, "Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy", Electrochimica Acta, Vol 82. pp. 126-131, 2012.
[85] Y. Yongmo, K. Sangpyeong, C. Junseok, "Separating and Detecting Escherichia Coli in a Microfluidic Channel for Urinary Tract Infection Applications", Microelectromechanical Systems, Journal of, Vol 20. pp. 819-827, 2011.
[86] R.L. Buchanan, M.P. Doyle, "Foodborne Disease Significance of Escherichia coli O157:H7 and Other Enterohemorrhagic E. coli", Food Technology, Vol 51. pp. 69-76, 1997.
[87] J. Niza-Ribeiro, A.C. Louzã, P. Santos, M. Lima, "Monitoring the microbiological quality of raw milk through the use of an ATP bioluminescence method", Food Control, Vol 11. pp. 209-216, 2000.
[88] H.I. Fromm, K.J. Boor, "Characterization of Pasteurized Fluid Milk Shelf-life Attributes", Journal of Food Science, Vol 69. pp. M207-M214, 2004.
[89] S. Huang, S. Ge, L. He, Q. Cai, C.A. Grimes, "A remote-query sensor for predictive indication of milk spoilage", Biosensors and Bioelectronics, Vol 23. pp. 1745-1748, 2008.
[90] Y.-G. Lee, H.-Y. Wu, C.-L. Hsu, H.-J. Liang, C.-J. Yuan, H.-D. Jang, "A rapid and selective method for monitoring the growth of coliforms in milk using the combination of amperometric sensor and reducing of methylene blue", Sensors and Actuators B: Chemical, Vol 141. pp. 575-580, 2009.
[91] J.E. Haugen, K. Rudi, S. Langsrud, S. Bredholt, "Application of gas-sensor array technology for detection and monitoring of growth of spoilage bacteria in milk: A model study", Analytica Chimica Acta, Vol 565. pp. 10-16, 2006.
[92] H.M. Al-Qadiri, M. Lin, M.A. Al-Holy, A.G. Cavinato, B.A. Rasco, "Monitoring Quality Loss of Pasteurized Skim Milk Using Visible and Short Wavelength Near-Infrared Spectroscopy and Multivariate Analysis", Journal of Dairy Science, Vol 91. pp. 950-958, 2008.
[93] O.N. Okigbo, G.H. Richardson, "Detection of Penicillin and Streptomycin in Milk by Impedance Microbiology", Journal of food protection, Vol 48. pp. 979-981, 1985.
[94] J. Strassburger, J. Hossbach, R. Seidel, "Application of Impediometry to Rapid Assessment of Liquid Culture Media", Zentralblatt für Bakteriologie, Vol 274. pp. 481-489, 1991.
[95] P. Silley, S. Forsythe, "Impedance microbiology—a rapid change for microbiologists", Journal of Applied Bacteriology, Vol 80. pp. 233–243, 1996.
[96] M. Wawerla, A. Stolle, B. Schalch, H. Eisgruber, "Impedance Microbiology: Applications in Food Hygiene", Journal of food protection, Vol 62. pp. 1488-1496, 1999.
[97] R. Gomez-Sjoberg, D.T. Morisette, R. Bashir, "Impedance Microbiology-on-a-Chip: Microfluidic Bioprocessor for Rapid Detection of Bacterial Metabolism", Microelectromechanical Systems, Journal of, Vol 14. pp. 829-838, 2005.
[98] A. Ur, D.F. Brown, "Impedance monitoring of bacterial activity", Journal of medical microbiology, Vol 8. pp. 19-28, 1975.
[99] R. Firstenberg-Eden, J. Zindulis, "Electrochemical changes in media due to microbial", Journal of Microbiological Methods, Vol 2. pp. 103-115, 1984.
[100] C.J. Felice, R.E. Madrid, J.M. Olivera, V.I. Rotger, M.E. Valentinuzzi, "Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves", J Microbiol Methods, Vol 35. pp. 37-42, 1999.
[101] B.C. Towe, V.B. Pizziconi, "A microflow amperometric glucose biosensor", Biosensors and Bioelectronics, Vol 12. pp. 893-899, 1997.
[102] C. Berggren, B. Bjarnason, G. Johansson, "An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step", Biosensors and Bioelectronics, Vol 13. pp. 1061-1068, 1998.
[103] V.M. Mirsky, M. Mass, C. Krause, O.S. Wolfbeis, "Capacitive approach to determine phospholipase A2 activity toward artificial and natural substrates", Analytical chemistry, Vol 70. pp. 3674-3678, 1998.
[104] R.P. Singh, B.A. Anderson, The major types of food spoilage: an overview, in: R. Steele (Ed.) Understanding and measuring the shelf-life of food Woodhead Publishing Ltd2004, pp. 3-23.
[105] P.V. Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O.D. Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, R. Mertens, "Nanoscaled interdigitated electrode arrays for biochemical sensors", Sensors and Actuators B-chemical, Vol 49. pp. 73-80, 1998.
[106] L. Yang, "Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes", Talanta, Vol 74. pp. 1621-1629, 2008.
[107] H.E. Ayliffe, R. Rabbitt, "An electric impedance based microelectromechanical system flow sensor for ionic solutions", Measurement science & technology, Vol 14. pp. 1321-1327, 2003.
[108] M.J. Sparnaay, The electric double layer, 1st ed., Pergamon Press, Sydney, 1972.
[109] X. Muñoz-Berbel, F.J. Muñoz, N. Vigués, J. Mas, "On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network", Sensors and Actuators B: Chemical, Vol 118. pp. 129-134, 2006.
[110] O.K. Okoth, K. Yan, L. Liu, J. Zhang, "Simultaneous Electrochemical Determination of Paracetamol and Diclofenac Based on Poly(diallyldimethylammonium chloride) Functionalized Graphene", Electroanalysis, Vol pp. n/a-n/a, 2015.
[111] S. Brosel-Oliu, N. Abramova, A. Bratov, N. Vigués, J. Mas, F.-X. Muñoz, "Sensitivity and Response Time of Polyethyleneimine Modified Impedimetric Transducer for Bacteria Detection", Electroanalysis, Vol 27. pp. 656-662, 2015.
[112] P. Datta, A. Dasgupta, "An improved microalbumin method (µALB_2) with extended analytical measurement range evaluated on the ADVIA® chemistry systems", Journal of Clinical Laboratory Analysis, Vol 23. pp. 314-318, 2009.
[113] A. Chugh, G.L. Bakris, "Microalbuminuria: what is it? Why is it important? What should be done about it? An update", Journal of clinical hypertension (Greenwich, Conn.), Vol 9. pp. 196-200, 2007.
[114] M.C. Ribera, R. Pascual, D. Orozco, C. Pérez Barba, V. Pedrera, V. Gil, "Incidence and risk factors associated with urinary tract infection in diabetic patients with and without asymptomatic bacteriuria", Eur J Clin Microbiol Infect Dis, Vol 25. pp. 389-393, 2006.
[115] D.J. Newman, M.B. Mattock, A.B. Dawnay, S. Kerry, A. McGuire, M. Yaqoob, G.A. Hitman, C. Hawke, "Systematic review on urine albumin testing for early detection of diabetic complications", Health technology assessment (Winchester, England), Vol 9. pp. iii-vi, xiii-163, 2005.
[116] S. Aoyagi, T. Iwata, T. Miyasaka, K. Sakai, "Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell", Analytica Chimica Acta, Vol 436. pp. 103-108, 2001.
[117] S. Choi, E.Y. Choi, H.S. Kim, S.W. Oh, "On-site quantification of human urinary albumin by a fluorescence immunoassay", Clinical chemistry, Vol 50. pp. 1052-1055, 2004.
[118] W.D. Comper, G. Jerums, T.M. Osicka, "Differences in urinary albumin detected by four immunoassays and high-performance liquid chromatography", Clinical biochemistry, Vol 37. pp. 105-111, 2004.
[119] M. Marre, J.P. Claudel, P. Ciret, N. Luis, L. Suarez, P. Passa, "Laser immunonephelometry for routine quantification of urinary albumin excretion", Clinical chemistry, Vol 33. pp. 209-213, 1987.
[120] H. Thakkar, D.J. Newman, P. Holownia, C.L. Davey, C.C. Wang, J. Lloyd, A.R. Craig, C.P. Price, "Development and validation of a particle-enhanced turbidimetric inhibition assay for urine albumin on the Dade aca analyzer", Clinical chemistry, Vol 43. pp. 109-113, 1997.
[121] G.F. Watts, J.E. Bennett, D.J. Rowe, R.W. Morris, W. Gatling, K.M. Shaw, A. Polak, "Assessment of immunochemical methods for determining low concentrations of albumin in urine", Clinical chemistry, Vol 32. pp. 1544-1548, 1986.
[122] R.N. Goyal, V.K. Gupta, N. Bachheti, "Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—An anabolic steroid used in doping", Analytica Chimica Acta, Vol 597. pp. 82-89, 2007.
[123] R.N. Goyal, V.K. Gupta, S. Chatterjee, "Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode", Talanta, Vol 76. pp. 662-668, 2008.
[124] R.N. Goyal, V.K. Gupta, S. Chatterjee, "Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode", Sensors and Actuators B: Chemical, Vol 149. pp. 252-258, 2010.
[125] V.K. Gupta, A.K. Singh, S. Mehtab, B. Gupta, "A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-3,4-diaminotoluene", Analytica Chimica Acta, Vol 566. pp. 5-10, 2006.
[126] A.K. Jain, V.K. Gupta, L.P. Singh, J.R. Raisoni, "A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors", Electrochimica Acta, Vol 51. pp. 2547-2553, 2006.
[127] K. Omidfar, A. Dehdast, H. Zarei, B.K. Sourkohi, B. Larijani, "Development of urinary albumin immunosensor based on colloidal AuNP and PVA", Biosensors & bioelectronics, Vol 26. pp. 4177-4183, 2011.
[128] A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, P. Thavarungkul, "A novel molecularly imprinted chitosan-acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin", Analyst, Vol 139. pp. 6160-6167, 2014.
[129] Hui Li, Lu Lu Zhang, Hao Yuan Cai, Xing Chen, Jian Hai Sun, Ya Peng Chao, D.F. Cui, "Portable-Surface Plasmon Resonance Biosensor Immunoassays for the Human Serum Albumin Detection", Key Engineering Materials Vol 562-565. pp. 408-411, 2013.
[130] T. Lai, Q. Hou, H. Yang, X. Luo, M. Xi, "Clinical application of a novel sliver nanoparticles biosensor based on localized surface plasmon resonance for detecting the microalbuminuria", Acta biochimica et biophysica Sinica, Vol 42. pp. 787-792, 2010.
[131] X. Niu, C. Chen, H. Zhao, J. Tang, Y. Li, M. Lan, "Porous screen-printed carbon electrode", Electrochemistry Communications, Vol 22. pp. 170-173, 2012.
[132] M. Polovina, B. Babić, B. Kaluderović, A. Dekanski, "Surface characterization of oxidized activated carbon cloth", Carbon, Vol 35. pp. 1047-1052, 1997.
[133] T. Wang, P.M.A. Sherwood, "X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 17. Interfacial Interactions between Phenolic Resin and Carbon Fibers Electrochemically Oxidized in Nitric Acid and Phosphoric Acid Solutions, and Their Effect on Oxidation Behavior", Chemistry of Materials, Vol 6. pp. 788-795, 1994.
[134] J. Moulder, W. Stickle, P. Sobol, K. Bomben, Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Prairie, MN, 1995.
[135] W. Dungchai, O. Chailapakul, C.S. Henry, "Electrochemical Detection for Paper-Based Microfluidics", Analytical chemistry, Vol 81. pp. 5821-5826, 2009.
[136] P. Kanyong, R.M. Pemberton, S.K. Jackson, J.P. Hart, "Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis", Analytical Biochemistry, Vol 428. pp. 39-43, 2012.
[137] Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, "Electrochemical sensing in paper-based microfluidic devices", Lab on a chip, Vol 10. pp. 477-483, 2010.
[138] M.H. Pournaghi-Azar, R. Ojani, "Catalytic oxidation of ascorbic acid by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample", Talanta, Vol 42. pp. 1839-1848, 1995.
[139] N. Winograd, H.N. Blount, T. Kuwana, "Spectroelectrochemical measurement of chemical reaction rates. First-order catalytic processes", The Journal of Physical Chemistry, Vol 73. pp. 3456-3462, 1969.
[140] Y. Lin, F. Lu, Y. Tu, Z. Ren, "Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles", Nano Letters, Vol 4. pp. 191-195, 2004.
[141] M.M. Sanagi, S.L. Ling, Z. Nasir, D. Hermawan, W.A. Ibrahim, A. Abu Naim, "Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography", Journal of AOAC International, Vol 92. pp. 1833-1838, 2009.
[142] R. Jain, V.K. Gupta, N. Jadon, K. Radhapyari, "Voltammetric determination of cefixime in pharmaceuticals and biological fluids", Analytical Biochemistry, Vol 407. pp. 79-88, 2010.
[143] J.M. Bland, D.G. Altman, "Statistical methods for assessing agreement between two methods of clinical measurement", Lancet, Vol 1. pp. 307-310, 1986.
[144] P.H. Petersen, D. Stockl, O. Blaabjerg, B. Pedersen, E. Birkemose, L. Thienpont, J.F. Lassen, J. Kjeldsen, "Graphical interpretation of analytical data from comparison of a field method with reference method by use of difference plots", Clinical chemistry, Vol 43. pp. 2039-2046, 1997.
[145] Y. Tholance, G. Barcelos, I. Quadrio, B. Renaud, F. Dailler, A. Perret-Liaudet, "Analytical validation of microdialysis analyzer for monitoring glucose, lactate and pyruvate in cerebral microdialysates", Clinica chimica acta; international journal of clinical chemistry, Vol 412. pp. 647-654, 2011.
[146] R. Siegel, E. Ward, O. Brawley, A. Jemal, "The impact of eliminating socioeconomic and racial disparities on premature cancer deaths", Ca-a Cancer Journal for Clinicians, Vol 61. pp. 212-236, 2011.
[147] R. Bryant, T. Pawlowski, J. Catto, G. Marsden, R. Vessella, B. Rhees, C. Kuslich, T. Visakorpi, F. Hamdy, "Changes in circulating microRNA levels associated with prostate cancer", British journal of cancer, Vol 106. pp. 768-774, 2012.
[148] J.R. Prensner, M.A. Rubin, J.T. Wei, A.M. Chinnaiyan, "Beyond PSA: the next generation of prostate cancer biomarkers", Science translational medicine, Vol 4. pp. 127rv123-127rv123, 2012.
[149] A. Wolf, R.C. Wender, R.B. Etzioni, I.M. Thompson, A.V. D′Amico, R.J. Volk, D.D. Brooks, C. Dash, I. Guessous, K. Andrews, "American Cancer Society guideline for the early detection of prostate cancer: update 2010", CA: a cancer journal for clinicians, Vol 60. pp. 70-98, 2010.
[150] H. Lilja, D. Ulmert, A.J. Vickers, "Prostate-specific antigen and prostate cancer: prediction, detection and monitoring", Nature reviews. Cancer, Vol 8. pp. 268-278, 2008.
[151] G.L. Andriole, E.D. Crawford, R.L. Grubb, S.S. Buys, D. Chia, T.R. Church, M.N. Fouad, E.P. Gelmann, P.A. Kvale, D.J. Reding, J.L. Weissfeld, L.A. Yokochi, B. O′Brien, J.D. Clapp, J.M. Rathmell, T.L. Riley, R.B. Hayes, B.S. Kramer, G. Izmirlian, A.B. Miller, P.F. Pinsky, P.C. Prorok, J.K. Gohagan, C.D. Berg, "Mortality Results from a Randomized Prostate-Cancer Screening Trial", New England Journal of Medicine, Vol 360. pp. 1310-1319, 2009.
[152] J. Hugosson, S. Carlsson, G. Aus, S. Bergdahl, A. Khatami, P. Lodding, C.-G. Pihl, J. Stranne, E. Holmberg, H. Lilja, "Mortality results from the Göteborg randomised population-based prostate-cancer screening trial", The Lancet Oncology, Vol 11. pp. 725-732.
[153] T.R. Daniels, Neacato, II, J.A. Rodriguez, H.S. Pandha, R. Morgan, M.L. Penichet, "Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells", Leukemia, Vol 24. pp. 1555-1565, 2010.
[154] R. Morgan, P.M. Pirard, L. Shears, J. Sohal, R. Pettengell, H.S. Pandha, "Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma", Cancer research, Vol 67. pp. 5806-5813, 2007.
[155] L. Plowright, K.J. Harrington, H.S. Pandha, R. Morgan, "HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer)", British Journal of Cancer, Vol 100. pp. 470-475, 2009.
[156] S.E. McGrath, A. Michael, H. Pandha, R. Morgan, "Engrailed homeobox transcription factors as potential markers and targets in cancer", FEBS letters, Vol 587. pp. 549-554, 2013.
[157] N.L. Martin, M.K. Saba-El-Leil, S. Sadekova, S. Meloche, G. Sauvageau, "EN2 is a candidate oncogene in human breast cancer", Oncogene, Vol 24. pp. 6890-6901, 2005.
[158] R. Morgan, A. Boxall, A. Bhatt, M. Bailey, R. Hindley, S. Langley, H.C. Whitaker, D.E. Neal, M. Ismail, H. Whitaker, N. Annels, A. Michael, H. Pandha, "Engrailed-2 (EN2): a tumor specific urinary biomarker for the early diagnosis of prostate cancer", Clinical cancer research : an official journal of the American Association for Cancer Research, Vol 17. pp. 1090-1098, 2011.
[159] H. Pandha, K.D. Sorensen, T.F. Orntoft, S. Langley, S. Hoyer, M. Borre, R. Morgan, "Urinary engrailed-2 (EN2) levels predict tumour volume in men undergoing radical prostatectomy for prostate cancer", BJU international, Vol 110. pp. E287-292, 2012.
[160] J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, "Advances in paper-based point-of-care diagnostics", Biosensors and Bioelectronics, Vol 54. pp. 585-597, 2014.
[161] S. Lee, H. Jo, J. Her, H.Y. Lee, C. Ban, "Ultrasensitive electrochemical detection of engrailed-2 based on homeodomain-specific DNA probe recognition for the diagnosis of prostate cancer", Biosensors & bioelectronics, Vol 66. pp. 32-38, 2015.
[162] C. Karuwan, A. Wisitsoraat, D. Phokharatkul, C. Sriprachuabwong, T. Lomas, D. Nacapricha, A. Tuantranont, "A disposable screen printed graphene-carbon paste electrode and its application in electrochemical sensing", RSC Advances, Vol 3. pp. 25792-25799, 2013.
[163] C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, A. Tuantranont, "Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing", Journal of Materials Chemistry, Vol 22. pp. 5478-5485, 2012.
[164] H.F. Teh, H. Gong, X.-D. Dong, X. Zeng, A.L.K. Tan, X. Yang, S.N. Tan, "Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface", Analytica chimica acta, Vol 551. pp. 23-29, 2005.
[165] X. Yang, S.B. Hall, S. Ngin Tan, "Electrochemical reduction of a conjugated cinnamic acid diazonium salt as an immobilization matrix for glucose biosensor", Electroanalysis, Vol 15. pp. 885-891, 2003.
[166] H.-E. Lee, Y.O. Kang, S.-H. Choi, "Electrochemical-DNA biosensor development based on a modified carbon electrode with gold nanoparticles for influenza A (H1N1) detection: effect of spacer", International Journal of Electrochemical Science, Vol 9. pp. 6793-6808, 2014.
[167] T.A. Ivandini, B.V. Sarada, T.N. Rao, A. Fujishima, "Electrochemical oxidation of underivatized-nucleic acids at highly boron-doped diamond electrodes", Analyst, Vol 128. pp. 924-929, 2003.
[168] H. Cai, C. Xu, P. He, Y. Fang, "Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA", Journal of Electroanalytical Chemistry, Vol 510. pp. 78-85, 2001.
[169] A. Ulianas, L.Y. Heng, S.A. Hanifah, T.L. Ling, "An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres", Sensors, Vol 12. pp. 5445-5460, 2012.
[170] J. Pan, "Voltammetric detection of DNA hybridization using a non-competitive enzyme linked assay", Biochemical engineering journal, Vol 35. pp. 183-190, 2007.
[171] L. Dykman, N. Khlebtsov, "Gold nanoparticles in biomedical applications: recent advances and perspectives", Chemical Society reviews, Vol 41. pp. 2256-2282, 2012.
指導教授 蔡章仁、劉仁材、陳靖容(Jang-Zern Tsai Jen-Tsai Liu Ching-Jung Chen) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明