博碩士論文 101583001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.162.133.222
姓名 徐侑豐(Yu-Feng Hsu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 行動機會網路下訊息傳遞與管理機制之研究
(Message Delivery and Management in Mobile Opportunistic Networks)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-8-1以後開放)
摘要(中) 行動機會網路(Mobile opportunistic network; MON) 是一種新型態的行動及無線網路,網路之內的訊息傳送可藉由節點移動與相遇的過程來轉遞訊息,以此方式逐步將訊息送達目的端節點。在行動機會網路的環境下,網路拓撲是動態且破碎的,並且難以保證任一對訊息來源端至目的端之間擁有持續性的端點到端點(end-to-end)路由路徑。因此,為了傳遞訊息,行動機會網路訴諸於使用耐延遲網路(Delay tolerant network; DTN)架構下的store-carry-and-forward傳遞模式。在這樣不穩定的環境下,訊息傳遞經常採用訊息複製的方式,來提升目的端收到訊息的機會。然而反覆地複製訊息也會消耗大量的網路資源,例如有限的儲存空間以及間斷的傳輸頻寬等。為了減少這類因複製訊息所導致的資源消耗,我們無疑地需要有效的 (1) 中繼節點選擇、(2) 訊息傳輸排程、以及 (3) 儲存空間管理機制。因此,本論文致力於在行動機會網路下儲存空間管理機制及訊息傳輸排程之研究,具體提出一組路由方法及策略,共包括:(1) Enhanced Buffer Management for Message Multicasting; (2) Probabilistic Routing with Contact Periodicity and Regularity; (3) On Exploiting Temporal Periodicity for Message Delivery。

雖然過往的研究曾提出許多儲存空間管理機制及訊息傳輸排程的研究,但是這些研究貢獻主要是基於訊息只有單一目的端的單播環境。如果考慮到訊息需要傳送到多個目的端的群播環境,那些研究所提出的作法由於未考慮到群播訊息傳遞之問題及特性,因而造成他們方法的應用及效能受到限制。因此,本論文研究的第一部份,提出了一個在行動機會網路群播環境下,有效的儲存空間管理機制及訊息傳輸排程方法(E-GBSD)。這個方法首先延伸了先前研究Optimal Knowledge-based Scheduling and Drop Policy,藉以得到一個效用函數來決定訊息傳遞及刪除的排序,使得以最大化群播訊息的傳遞成功率。模擬結果顯示,在訊息群播下,E-GBSD比起其它傳統典型的儲存空間管理機制及訊息傳輸排程機制,更能在群播方面展現出效能的優勢。

針對行動機會網路下訊息複製方法之效能改善,本論文之研究進一步結合機率性路由方法,用以提高訊息傳遞成功率。有鑑於過往的機率性路由方法,其路由決策值delivery predictability的計算主要依靠節點之間的相遇頻率。然而,我們研究發現delivery predictability在一個節點相遇頻率較低的時間區間內會變的相當不可靠。此外,機率性路由配合傳統的如先進先出(First-in, First-out)佇列方法,也會導致Looping Problem使得傳輸成本變得異常高。因此,本論文研究的第二個部份,提出了一個基於相遇周期性及規律性的機率性路由方法(PRCPR)。這個方法考慮當節點處於一個相遇頻率較低的時間區間內時,不使用原來的delivery predictability模式而是改採用剩餘的時間區間來決定訊息路由。因此,這個方法能夠有效地判斷節點此刻是否需要傳送訊息給相遇節點。同時,這個研究也提出一個輕量級的儲存空間管理機制來應對Looping Problem。模擬結果顯示,在訊息流量擁塞的情況下,PRCPR比起傳統的機率性路由,能在傳遞成功率上增加10%,同時還能維持在適度的傳輸成本。

再者,近期的文獻經由分析真實的移動軌跡檔之後,發現人類的移動具有周期性。而行動機會網路下的訊息路由正因為依賴於節點移動特性,節點周期性即變成一個用來強化路由方法的重要因子。因此,為了利用周期性及節點的相遇特性,本論文研究的第三個部份,則提出了一套基於相遇周期性和相遇相似度的訊息路由機制(TPMD)。這個機制首先識別出節點相遇在時間上的周期性,進而提出一個量化周期的方法。模擬結果顯示,在移動具有周期性的環境下,TPMD比起傳統知名的PRoPHETv2路由方法,能夠獲得更高傳遞成功率及較低的傳輸成本。

本論文研究之整合成果能夠促進MON的訊息傳遞以及管理機制之效率。而我們相信,這些在MON架構環境下所研發出來的成果,未來將能夠應用於即將到來的新興技術如:Device-to-Device Communications、Vehicle-to-Everything Networking、Edge Computing、Information-Centric Networking等。
摘要(英) The mobile opportunistic network (MON) is an emerging thread of mobile and wireless networks. In MONs, message distribution takes advantage of node mobility and opportunistic encounters with other nodes over infrastructure-less networks. Network topologies in MONs are fragmented dynamically, and persistent end-to-end paths between any pairs of source and destination nodes cannot be guaranteed. Hence, many studies resort to store-carry-and-forward transfer model originating from the delay/disruption tolerant networks (DTNs) architecture to deliver messages in MONs. In this environment, message delivery often applies the message replication methodology to contend with network dynamics, thus increasing the opportunity that destinations can receive message replicas of an original message from a source node in a network. However, repeatedly replicating messages among mobile nodes consumes significant resources like local buffer space on nodes and limited bandwidth during inter-node communications. To reduce resource cost accompanied with repeatedly replicating messages in a MON system, (1) relay selection, (2) transmission scheduling, and (3) buffer management are three crucial research dimensions that must be resolved certainly. To this purpose, the study in this dissertation addresses chiefly on buffer management, message scheduling, and routing aspects, and results in several contributions for message delivery in MONs: technically, (1) Enhanced Buffer Management for Message Multicasting, (2) Probabilistic Routing with Contact Periodicity and Regularity, and (3) On Exploiting Temporal Periodicity for Message Delivery.

Although previous studies proposed various buffer management and scheduling policies, their efforts mainly contributed to a simple scenario of message unicasting from a source to a singular destination in a network. When message multicasting towards multiple destinations is considered, previous solutions performed inefficiently since the essence of their efforts were not optimized for message multicasting with different performance measures. Therefore, the first part in this dissertation proposes an efficient buffer management and scheduling scheme, called E-GBSD, on the base of a generic replication-based routing model for message multicasting in MONs. The proposed design elegantly extends an optimal knowledge-based scheduling and drop policy, and derives a new utility function to prioritize messages in a buffer for maximizing the successful delivery rate in a network. Simulation results manifest that E-GBSD outperforms not only the original policy but also several buffer management policies under message multicasting in MONs.

Probabilistic routing with message replication is recognized as an important methodology that can attain high performance of successful message delivery. Prior probabilistic routing studies mainly depended on delivery predictability with contact frequencies among nodes. However, our study finds that the accuracy of delivery predictability is sensitive and unreliable during time periods of low contact frequency. Conventional probabilistic routing schemes with flat queuing policies, like First-in and First-out, may result in a looping problem that will cause nonnegligible transmission overhead. Hence, the second part in this dissertation presents the probabilistic routing based on contact periodicity and regularity (PRCPR) to maintain the performance of probabilistic routing in MONs. This scheme considers the residual duration of a current period instead of the original delivery predictability when nodes undergo some periods of low contact frequency. This scheme can thus enable nodes to accurately determine whether or not to hand over messages when two nodes encounter during movement. Besides, this study also proposes a lightweight buffer management policy to cope with the message looping problem. Simulation results manifest that the proposed scheme obtains better delivery performance that could be enhanced at most 10% with moderate transmission overhead than conventional probabilistic routing scheme when message traffic is congested.

Recently, some studies argued that human mobility involves some periodicity as a result of various realistic mobility traces and analyses. Whereas routing in MONs is sensitive to node mobility and network dynamics, periodicity has become an important factor for routing design in MONs. Hence, to exploit the properties of periodicity and contact relationship among nodes, the third part in this dissertation proposes an efficient message forwarding scheme, named Temporal Periodicity for Message Delivery (TPMD), which is based on the contact periodicity and contact similarity. This study effort identifies the characteristics of contact periodicity among nodes in a temporal scale, and formulates a period quantification procedure. Referring to temporal periodicity in MONs, we conduct extensive simulation to examine TPMD and show its efficiency on improving successful delivery rate and lowering message overhead as compared with the famous PRoPHETv2 scheme.

Therefore, the contribution of this dissertation can promote the efficiency of message delivery and management in MONs. We believe that these efforts to MONs can be integrated to the emerging network technologies such as Device-to-Device Communications, Vehicle-to-Everything Networking, Edge Computing, and Information-Centric Networking in the coming future.
關鍵字(中) ★ 行動機會網路
★ 耐延遲網路
★ 訊息傳遞
★ 路由設計
★ 儲存空間管理
關鍵字(英) ★ Mobile Opportunistic Network
★ Delay Tolerant Network
★ Message Delivery
★ Routing design
★ Buffer management
論文目次 Abstract (Chinese) i
Abstract (English) iii
Acknowledgement v
List of Figures ix
List of Tables xii
1 Introduction 1
1.1 Motivation......................................... 3
1.2 Overview of the Dissertation .............................. 5
1.2.1 Enhanced Buffer Management for Message Multicasting . . . . . . . . . . 5
1.2.2 Probabilistic Routing with Contact Periodicity and Regularity . . . . . . . 6
1.2.3 On Exploiting Temporal Periodicity for Message Delivery . . . . . . . . . 7
1.3 DissertationStructure................................... 7
2 Related Work 8
2.1 Message Scheduling and Dropping Policies...................... 8
2.1.1 Heuristic-based Policy.............................. 8
2.1.2 Optimal-based Policy .............................. 10
2.2 Probabilistic Routing Schemes.............................. 12
2.3 Characteristics of Contacts, and Contact Periodicity . . . . . . . . . . . . . . . . . 14
3 Enhanced Buffer Management for Message Multicasting 16
3.1 Introduction........................................ 16
3.2 Problem Formulation and Utility Function ...................... 17
3.2.1 System Environment and Assumptions .................... 17
3.2.2 Problem Formulation .............................. 20
3.2.3 Utility Function.................................. 21
3.3 E-GBSD:Policy Design and Algorithm......................... 24
3.3.1 Observations and Design Considerations ................... 24
3.3.2 AlgorithmicForms................................ 26
3.4 Performance Results ................................... 27
3.4.1 Simulation Settings................................ 27
3.4.2 Sensitivity to the Number of Destination Nodes . . . . . . . . . . . . . . . 31
3.4.3 Sensitivity to the Number of SourceNodes.................. 33
3.4.4 Sensitivity to the Value of Time-To-Live (TTL) Duration . . . . . . . . . . . 33
3.4.5 Sensitivity to Buffer Size............................. 35
3.4.6 Summary of Performance Results ....................... 37
3.5 Summary.......................................... 37
4 Probabilistic Routing with Contact Periodicity and Regularity 38
4.1 Introduction........................................ 38
4.2 Problem Description and Formulations ........................ 39
4.2.1 Testbed and Experimental Cases ........................ 39
4.2.2 UnreliableDeliveryPredictability ....................... 42
4.2.3 Looping Message Problem ........................... 43
4.3 Proposed Probabilistic Routing Scheme ........................ 47
4.3.1 System Environment and Assumptions .................... 47
4.3.2 Design Abstraction................................ 48
4.3.3 Active Period Determination .......................... 49
4.3.4 Routing Metric Decision............................. 51
4.3.5 Message Scheduling Policy ........................... 54
4.3.6 Buffer Management Policy ........................... 54
4.4 PerformanceResults ................................... 55
4.4.1 Simulation Settings................................ 56
4.4.2 Impact of Buffer Management Policy ..................... 58
4.4.3 Impact of Buffer Size and Time-to-Live(TTL)value . . . . . . . . . . . . . 58
4.4.4 Impact of Message Traffic ............................ 62
4.4.5 Impact of Node Density ............................. 64
4.4.6 Impact of Time Periods ............................. 65
4.4.7 Impact of Heterogeneous contact patterns. . . . . . . . . . . . . . . . . . . 70
4.4.8 Observations and Remarks on Performance Results . . . . . . . . . . . . . 74
4.5 Summary.......................................... 74
5 On Exploiting Temporal Periodicity for Message Delivery 76
5.1 Introduction........................................ 76
5.2 Temporal Periodicity for Message Delivery ...................... 77
5.2.1 SystemModel................................... 77
5.2.2 PeriodDetection ................................. 79
5.2.3 Forwarding Metric: Residual Inter-contact Time Unit . . . . . . . . . . . . 84
5.3 Simulations ........................................ 85
5.3.1 Settings ...................................... 86
5.3.2 Contact Prediction by Contact Similarity Based Period Detection ..... 88
5.3.3 Performance Result in Homogeneous Periodicity Data Trace . . . ..... 89
5.3.4 Performance Result in Heterogeneous Periodicity Data Trace . . ..... 90
5.3.5 Impact of Threshold α of Contact similarity based period detection . . . . 92
5.3.6 Impact of the Unit Length Tu .......................... 93
5.3.7 Discussion and Future Works.......................... 94
5.4 Summary.......................................... 96
6 Conclusion and Future Prospects 98
A Time-Variant Community Mobility Model (TVCM) 100
A.1 Time period patterns of TVCM .............................100
B Real Traces ....................................103
Bibliography....................................104
參考文獻 [1] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Mobile Ad Hoc networking: the cutting edge directions. John Wiley & Sons, 2013, vol. 35.
[2] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, “Optimized link state routing protocol for ad hoc networks,” in Proc. IEEE Int. Multi Topic Conf., Lahore, Pakistan, 2001, pp. 62–68.
[3] C.E.PerkinsandE.M.Royer,“Ad-hocon-demanddistancevectorrouting,”inProc.IEEEWorkshoponMobile Computing Systems and Applications (WMCSA’99), Feb. 25–26, 1999, pp. 90–100.
[4] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing, ser. The Kluwer International Series in Engineering and Computer Science. Springer US, 1996, vol. 353, pp. 153–181.
[5] P. R. Pereira, A. Casaca, J. J. P. C. Rodrigues, V. N. G. J. Soares, J. Triay, and C. Cervello-Pastor, “From delay- tolerant networks to vehicular delay-tolerant networks,” IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1166– 1182, 2012.
[6] M. Y. S. Uddin, H. Ahmadi, T. Abdelzaher, and R. Kravets, “A low-energy, multi-copy inter-contact routing protocol for disaster response networks,” in Proc. IEEE SECON’09, Rome, Italy, Jun. 22–26, 2009.
[7] T. Spyropoulos, R. N. B. Rais, T. Turletti, K. Obraczka, and A. Vasilakos, “Routing for disruption tolerant networks: taxonomy and design,” Wirel. Netw., vol. 16, pp. 2349–2370, September 2010.
[8] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 654–677, 2013.
[9] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proc. ACM SIGCOMM’03, Karl- sruhe, Germany, Aug. 25–29 2003, pp. 27–34.
[10] A. Krifa, C. Barakat, and T. Spyropoulos, “Message drop and scheduling in dtns: Theory and practice,” IEEE Trans. Mobile Comput., vol. 11, no. 9, pp. 1470–1483, Sep. 2012.
[11] A. Elwhishi, P.-H. Ho, K.Naik, and B. Shihada, “A novel message scheduling framework for delay tolerant networks routing,” IEEE Trans. Parallel Distrib. Syst, vol. 24, no. 5, pp. 871–880, May 2013.
[12] A.VahdatandD.Becker,“Epidemicroutingforpartiallyconnectedadhocnetworks,”DukeUniversity,Tech. Rep. CS-200006, 2000.
[13] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic routing in intermittently connected networks,” SIGMO- BILE Mobile Computing and Communications Review, vol. 7, no. 3, pp. 19–20, Jul. 2003.
[14] A.F.Lindgren,A.Doria,E.Davies,andS.Grasic,“Probabilisticroutingprotocolforintermittentlyconnected networks,” RFC 6693, Aug. 2012.
[15] S. Grasic, E. Davies, A. Lindgren, and A. Doria, “The evolution of a DTN routing protocol - PRoPHETv2,” in Proc. ACM CHANTS’11, Las Vegas, Nevada, USA, Sep. 19–23, 2011, pp. 27–30.
[16] A.LindgrenandK.S.Phanse,“Evaluationofqueueingpoliciesandforwardingstrategiesforroutingininter- mittently connected networks,” in Proc. Int. Conf. Commun. Syst. Software and Middleware, Jan. 8–12, 2006, pp. 1–10.
[17] S. Sati, C. Probst, and K. Graffi, “Implementing forward and drop policies for improving prophet’s routing performance,” in Proc. 12th Int. Conf. Mobile Ad-Hoc and Sensor Networks (MSN’16), Dec 2016, pp. 236–242.
[18] L. Leela-amornsin and H. Esaki, “Heuristic congestion control for message deletion in delay tolerant net- work,” in Proc. 3rd Conf. Smart Spaces and 10th Int. Conf. Next Generation Wired/Wireless networking, S. Balandin, R. Dunaytsev, and Y. Koucheryavy, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 287–298.
[19] S. Rashid, Q. Ayub, M. S. M. Zahid, and A. Abdullah, “Message drop control buffer management policy for dtn routing protocols,” Wireless Pers. Commun., vol. 72, no. 1, pp. 653–669, 2013.
[20] M. Kim and D. Kotz, “Periodic properties of user mobility and access-point popularity,” Personal Ubiquitous Comput., vol. 11, no. 6, pp. 465–479, Aug. 2007.
[21] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement in location-based social net- works,” in Proc. ACM SIGKDD KDD’11, San Diego, California, USA, 2011, pp. 1082–1090.
[22] S.MoonandA.Helmy,“Understandingperiodicityandregularityofnodalencountersinmobilenetworks:A spectral analysis,” in Proc. IEEE GLOBECOM’10, Miami, USA, Dec. 6–10, 2010.
[23] Z. Wang, M. A. Nascimento, and M. H. MacGregor, “Discovering periodic patterns of nodal encounters in mobile networks,” Pervasive Mob. Comput., vol. 9, no. 6, pp. 892 – 912, 2013.
[24] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi, “Limits of predictability in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.
[25] G.Smith,R.Wieser,J.Goulding,andD.Barrack,“Arefinedlimitonthepredictabilityofhumanmobility,”in Proc. IEEE Int. Conf. Pervasive Computing and Communications (PerCom’14), Mar. 2014, pp. 88–94.
[26] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling of epidemic routing,” Computer Net- works, vol. 51, no. 10, pp. 2867–2891, Jul. 2007.
[27] J.Burgess,B.Gallagher,D.Jensen,andB.N.Levine,“Maxprop:Routingforvehicle-baseddisruption-tolerant networks,” in Proc. IEEE INFOCOM, Barcelona, Catalunya, SPAIN, Apr. 23–29, 2006.
[28] K. Shin and S. Kim, “Enhanced buffer management policy that utilises message properties for delay-tolerant networks,” IET Communications, vol. 5, no. 6, pp. 753–759, Apr. 2011.
[29] Y.Liu,J.Wang,S.Zhang,andH.Zhou,“Abuffermanagementschemebasedonmessagetransmissionstatus in delay tolerant networks,” in Proc. IEEE GLOBECOM’11, Houston, Texas, USA, Dec. 5–9, 2011.
[30] J. F. Naves, I. M. Moraes, and C. Albuquerque, “Lps and lrf: Efficient buffer management policies for delay and disruption tolerant networks,” in Proc. IEEE Conf. Local Computer Networks (LCN’12), Clearwater, Florida, USA, Oct. 22–25, 2012, pp. 368–375.
[31] D.Wu,J.Zhou,P.Zhang,andR.Wang,“Intelligentdynamicalbufferschedulingmechanismforintermittently connected mobile network,” Wireless Pers. Commun., vol. 73, no. 3, pp. 1269–1288, 2013.
[32] K. Wei, S. Guo, D. Zeng, and K. Xu, “A multi-attribute decision making approach to congestion control in delay tolerant networks,” in Proc. IEEE ICC’14, Syndey, Australla, Jun. 10–14, 2014, pp. 2742–2747.
[33] K. Wang, H. Guo, L. Shu, and B. Liu, “An improved congestion control algorithm based on social awareness in delay tolerant networks,” in Proc. IEEE ICC’14, Syndey, Australla, Jun. 10–14, 2014, pp. 1773–1777.
[34] Y. Li, L. Zhao, Z. Liu, and Q. Liu, “N-drop: Congestion control strategy under epidemic routing in dtn,” in Proc. Int. Conf. Wireless Commun. and Mobile Computing: Connecting the World Wirelessly (IWCMC’09). New York, NY, USA: ACM, 2009, pp. 457–460.
[35] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Dtn routing as a resource allocation problem,” in Proc. ACM SIGCOMM’07, Kyoto, Japan, Aug. 27–31, 2007, pp. 373–384.
[36] A.Krifa,C.Barakat,andT.Spyropoulos,“Optimalbuffermanagementpoliciesfordelaytolerantnetworks,” in Proc. IEEE SECON’08, San Francisco, California, USA, Jun. 16–20, 2008, pp. 260–268.
[37] Y.Li,M.Qian,D.Jin,L.Su,andL.Zeng,“Adaptiveoptimalbuffermanagementpoliciesforrealisticdtn,”in Proc. IEEE GLOBECOM’09, Honolulu, Hawaii, USA, Nov. 30–Dec. 4, 2009.
[38] I. Rahmouni, M. E. Kamili, M. R. E. Fenni, L. Omari, and A. Kobbane, “Optimal buffer management policies in dtns: A pomdp approach,” in Proc. IEEE ICC’14, Syndey, Australla, Jun. 10–14, 2014, pp. 94–99.
[39] H.WuandH.Ma,“Dsvm:Abuffermanagementstrategyforvideotransmissioninopportunisticnetworks,” in Proc. IEEE ICC’13, Budapest, Hungary, Jun. 9–13, 2013, pp. 2990–2994.
[40] E.BulutandB.K.Szymanski,“Exploitingfriendshiprelationsforefficientroutinginmobilesocialnetworks,” IEEE Trans. Parallel Distrib. Syst, vol. 23, no. 12, pp. 2254–2265, Dec. 2012.
[41] P.Matzakos,T.Spyropoulos,andC.Bonnet,“Jointschedulingandbuffermanagementpoliciesfordtnappli- cations of different traffic classes,” IEEE Trans. Mobile Comput., vol. PP, no. 99, pp. 1–1, 2018.
[42] T.Le,H.Kalantarian,andM.Gerla,“Abuffermanagementstrategybasedonpower-lawdistributedcontacts in delay tolerant networks,” in Proc. 25th Int. Conf. on Computer Commun. and Networks (ICCCN), Aug 2016, pp. 1–8.
[43] A. Krifa, C. Barakat, and T. Spyropoulos, “An optimal joint scheduling and drop policy for delay tolerant networks,” in Proc. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoW- MoM’08), Newport Beach, CA, USA, Jun. 23–26, 2008.
[44] Y. Li, X. Li, Q. Liu, and Z. Liu, “E-PROPHET: A novel routing protocol for intermittently connected wireless networks,” in Proc. Int. Conf. Wireless Commun. and Mobile Computing, Leipzig, Germany, Jun. 21-24, 2009, pp. 452–456.
[45] H.J.Lee,J.C.Nam,W.K.Seo,Y.Z.Cho,andS.H.Lee,“EnhancedPRoPHETroutingprotocolthatconsiders contact duration in dtns,” in Proc. Int. Conf. Inform. Networking, Cambodia, Jan. 2015, pp. 523–524.
[46] C.Yu,Z.Tu,D.Yao,F.Lu,andH.Jin,“Probabilisticroutingalgorithmbasedoncontactdurationandmessage redundancy in delay tolerant network,” Int. J. Commun. Syst., 2015.
[47] T.-K.Huang,C.-K.Lee,andL.-J.Chen,“PRoPHET+:AnadaptivePRoPHET-basedroutingprotocolforoppor- tunistic network,” in Proc. 24th IEEE Int. Conf. Advanced Inform. Networking and Applicat., Perth, WA, Australia, Apr. 20–23, 2010, pp. 112–119.
[48] K.Wang,Y.Zhang,L.Shu,C.Zhu,andM.Gao,“Napr:Anodeactivity-basedprobabilisticroutingalgorithm in delay tolerant-mobile sensor networks,” in Proc. IEEE ICC’15, Jun. 2015, pp. 7002–7006.
[49] B. B. Bista and D. B. Rawat, “EA-PRoPHET: An energy aware PRoPHET-based routing protocol for delay tolerant networks,” in Proc. 31st IEEE Int. Conf. Advanced Inform. Networking and Applicat. (AINA’17), Mar. 2017, pp. 670–677.
[50] A. E. Ouadrhiri, I. Rahmouni, M. E. Kamili, and I. Berrada, “Controlling messages for probabilistic routing protocols in delay-tolerant networks,” in Proc. IEEE Symp. Comput. and Commun. (ISCC’14), June 2014, pp. 1–6.
[51] X.Wang,R.He,B.Lin,andY.Wang,“Probabilisticroutingbasedontwo-hopinformationindelay/disruption tolerant networks,” J. Elect. Comput. Eng., vol. 2015, Jan. 2015.
[52] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in Proc. ACM SIGCOMM’04, Portland, Oregon, USA, Aug. 30 – Sep. 3, 2004, pp. 145–158.
[53] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and time in networks with predictable mobility,” College of Computing, Georgia Institute of Technology, Tech. Rep. GIT-CC-04-07, 2004.
[54] Z. Wang, M. A. Nascimento, and M. MacGregor, “Towards end-to-end routing for periodic mobile objects,” in Proc. ACM Int. Symp. Design and Anal. Intelligent Veh. Networks and Applicat. (DIVANet’11), Miami, Florida, USA, 2011, pp. 61–68.
[55] Z. Wang, M. A. Nascimento, and M. H. MacGregor, “Optimal encounter-based routing via objects with peri- odic behaviours,” in Proc. IEEE Conf. Local Computer Networks Workshops, Edmonton, Canada, Sep. 8–11, 2014, pp. 730–737.
[56] C.LiuandJ.Wu,“Practicalroutinginacyclicmobispace,”IEEE/ACMTrans.Netw.,vol.19,no.2,pp.369–382, Apr. 2011.
[57] C. Caini, H. Cruickshank, S. Farrell, and M. Marchese, “Delay- and disruption-tolerant networking (DTN): An alternative solution for future satellite networking applications,” Proc. IEEE, vol. 99, no. 11, pp. 1980–1997, Nov. 2011.
[58] J. Mukherjee and B. Ramamurthy, “Communication technologies and architectures for space network and interplanetary internet,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 881–897, 2013.
[59] S. Batabyal and P. Bhaumik, “Mobility models, traces and impact of mobility on opportunistic routing algo- rithms: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1679–1707, 2015.
[60] P. Hui and J. Crowcroft, “Predictability of human mobility and its impact on forwarding,” in Proc. Int. Conf. Commun. and Networking in China, Aug. 2008, pp. 543–547.
[61] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling spatial and temporal dependencies of user mobility in wireless mobile networks,” IEEE/ACM Trans. Netw., vol. 17, no. 5, pp. 1564–1577, Oct. 2009.
[62] M. J. Williams, R. M. Whitaker, and S. M. Allen, “There and back again: Detecting regularity in human en- counter communities,” IEEE Trans. Mobile Comput., vol. PP, no. 99, pp. 1–1, 2016.
[63] W.Gao,G.Cao,T.L.Porta,andJ.Han,“Onexploitingtransientsocialcontactpatternsfordataforwardingin delay-tolerant networks,” IEEE Trans. Mobile Comput., vol. 12, no. 1, pp. 151–165, Jan. 2013.
[64] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing complex social systems,” Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255–268, Mar. 2006.
[65] A. Guerrieri, I. Carreras, F. D. Pellegrini, D. Miorandi, and A. Montresor, “Distributed estimation of global parameters in delay-tolerant networks,” Compu. Commun., vol. 33, no. 13, pp. 1472–1482, 2010.
[66] A. Kera ?nen, J. Ott, and T. Ka ?rkka ?inen, “The one simulator for dtn protocol evaluation,” in Proc. Int. Conf. Simulation Tools and Techn., 2009.
[67] J.Scott,R.Gass,J.Crowcroft,P.Hui,C.Diot,andA.Chaintreau,“CRAWDADdatasetcambridge/haggle(v. 2009-05-29),” Downloaded from http://crawdad.org/cambridge/haggle/20090529/, May 2009.
[68] D. M. W. Powers, “Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation,” Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.
[69] Z.Li,J.Wang,andJ.Han,“ePeriodicity:Miningeventperiodicityfromincompleteobservations,”IEEETrans. Knowl. Data Eng., vol. 27, no. 5, pp. 1219–1232, May 2015.
[70] T.Guan,K.-r.Wang,andS.-p.Zhang,“Arobustperiodicityminingmethodfromincompleteandnoisyobser- vations based on relative entropy,” International Journal of Machine Learning and Cybernetics, vol. 8, no. 1, pp. 283–293, Feb. 2017.
[71] M.Vlachos,P.Yu,andV.Castelli,“Onperiodicitydetectionandstructuralperiodicsimilarity,”inProc.SIAM Int. Conf. Data Mining, 2005.
[72] Q. Yuan, J. Shang, X. Cao, C. Zhang, X. Geng, and J. Han, “Detecting multiple periods and periodic patterns in event time sequences,” in Proc. ACM Int. Conf. Information and Knowledge Management (CIKM’17), Singapore, Nov. 2017, pp. 617–626.
[73] N. Eagle and A. S. Pentland, “Crawdad dataset mit/reality (v. 20050701),” downloaded from https://crawdad.org/mit/reality/20050701/blueaware, Jul. 2005.
[74] M. Piorkowski, N. SarafijanovicDjukic, and M. Grossglauser, “Crawdad dataset epfl/mobility (v. 20090224),” downloaded from https://crawdad.org/epfl/mobility/20090224, Feb. 2009.
[75] J. Burgess, J. Zahorjan, R. Mahajan, B. N. Levine, A. Balasubramanian, A. Venkataramani, Y. Zhou, B. Croft, N. Banerjee, M. Corner, and D. Towsley, “Crawdad dataset umass/diesel (v. 20080914),” downloaded from https://crawdad.org/umass/diesel/20080914/transfer, Sep. 2008.
[76] 3GPP,“Feasibilitystudyforproximityservices(prose),”3rdGenerationPartnershipProject(3GPP),Tech.Rep. TR 22.803, 2013.
[77] 5GAA,“Thecaseforcellularv2xforsafetyandcooperativedriving,”5GAutomotiveAssociation,Tech.Rep., 2016.
[78] S. T. Kouyoumdjieva and G. Karlsson, “From opportunistic networks to 3gpp network-independent device- to-device communication,” GetMobile: Mobile Comp. and Comm., vol. 20, no. 2, pp. 22–26, Oct. 2016.
[79] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015.
[80] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera, R. L. Aguiar, and A. V. Vasilakos, “Information-centric networking for the internet of things: challenges and opportunities,” IEEE Netw., vol. 30, no. 2, pp. 92–100, 2016.
[81] C. Sarros, S. Diamantopoulos, S. Rene, I. Psaras, A. Lertsinsrubtavee, C. Molina-Jimenez, P. Mendes, R. Sofia, A. Sathiaseelan, G. Pavlou, J. Crowcroft, and V. Tsaoussidis, “Connecting the edges: A universal, mobile- centric, and opportunistic communications architecture,” IEEE Commun. Mag., vol. 56, no. 2, pp. 136–143, Feb 2018.
[82] E. Borgia, R. Bruno, and A. Passarella, “Making opportunistic networks in iot environments ccn-ready: A performance evaluation of the mobccn protocol,” Compu. Commun., vol. 123, pp. 81–96, 2018.
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明