博碩士論文 101621004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.229.142.91
姓名 林定賢(Ting-Hsien Lin)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究
★ 臺灣大氣背景PM2.5質量濃度之推估★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究
★ Mapping Surface Solar Radiation with Satellite Data over Taiwan★ 開發適用於大氣邊界層觀測的無人機系統
★ 利用AERONET資料解析中南半島地區氣膠種類及成分★ 氣膠對臺灣北部暖雲微物理和毛雨的影響
★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers★ 氣膠對臺灣中部平原夏季降水日變化之影響
★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生質燃燒氣膠對於大氣成分的改變與氣候變遷都有不可忽略的貢獻,中南半島為生質燃燒活動最為盛行區域之一,雖然已知氣候可能是此區域生質燃燒旺盛與否的主因,但主因與污染物傳輸變化的影響上所知仍舊有限。故本研究著重於利用NASA/MERRAero氣膠再分析資料,結合MODIS火點、氣膠光學厚度與雲等衛星資料,分析長時期(2003到2014年)中南半島春季生質燃燒氣膠分布與傳輸特徵,並探討其與氣候及區域環流間之關聯性,以及初探生質燃燒氣膠對區域輻射收支、雲微物理與降雨的潛在影響。

本研究主要選擇範圍85°-143°E和8°-44°N,由衛星火點資料分析顯示,中南半島北部為生質燃燒主要發生區域,也是本篇研究主要範圍。結合Niño3.4區域海溫與中南半島火點距平,可將過去十二年之中南半島生質燃燒極端事件分為三種情境:(A)Niño3.4海溫高相關之生質燃燒事件;(B)Niño3.4海溫低相關之強生質燃燒事件;及(C)Niño3.4海溫低相關之弱生質燃燒事件。在情境A中,2008和2011年Niño3.4具低海溫特徵,大陸冷高壓及其伴隨的東北季風較為強勁,勢力延伸至南海及中南半島,因此太平洋高壓勢力在東亞大幅減弱,此情境下東北季風配合850hPa東風帶北移西伸,有利水氣輸送至中南半島,造就一個不利生質燃燒的潮濕環境。相反的,2010年Niño3.4海溫呈現劇烈的正距平,此年東北季風較弱,整體氣候場呈現有利生質燃燒生成環境。在情境B中,2007年為典型的例子,當年Niño3.4海溫無明顯波動,但因太平洋高壓位置西伸至西太平洋邊緣,阻擋大陸冷高壓南下,使中南半島的環流場改由西南風支配,造就旺盛的生質燃燒。在情境C中,當上述大尺度環流接近氣候平均,此時印度高壓減弱可能使更多的水氣從印度洋傳送至中南半島西部,也是2003與2005年生質燃燒活動轉為零星的主要原因。

在污染物長程傳輸方面,2008與2011年等弱燃燒事件年中,由於北方高壓及其伴隨的東北季風影響較強,破壞原本存在於中南半島的相對低壓減弱,使輻合上升運動明顯減弱,污染物較難上升至自由大氣進行長程傳輸。相反的,如在2007年的強燃燒年中,相對低壓特徵明顯,加上大尺度環流配合地形抬升效應,有助污染物向高層傳送,並藉由西風帶向東傳輸,除此之外在強燃燒年中,高層西風帶向下風處的傳輸效率較佳,甚至能將污染物傳送至日本南方海域。

進一步針對極端事件年進行區域大氣輻射及環境衝擊之初探。估算在大氣層頂之氣膠造成的直接輻射通量改變,2007和2010高燃燒年分別為-13.36與-16.24 Wm-2,2008和2011年低燃燒年則為-11.78與-9.64 Wm-2,皆遠大於全球平均輻射驅動力(-0.27 Wm-2)。生質燃燒傳輸路徑上,正行經一片均質的層積雲區域,大量生質燃燒氣膠排放到大氣中並進入到雲系統中,可改變雲微物理特徵。結果顯示,在無大尺度系統影響下,高濃度污染物將成為雲凝結核改變雲微物理特性,雲滴粒徑相較於平均值偏小,造成區域降水量減少或推延降雨時間的可能性。
摘要(英) The aerosols from biomass burning have a non-negligible contribution to atmospheric composition, as well as to climate change. Indochina is one of the prevailing source regions of biomass burning in the world. Despite the large–scale climate has been known a possible factor to biomass-burning actives in this region, the long-thern variability and transport mechanisms in different climate patterns still remain unstudied. Therefore, this study focuses on analyzing long-term (2003-2014) distribution and transport characteristics of biomass-burning aerosols and meteorology in March using NASA/MERRAero data set. Combining with satellite data (e.g., MODIS fire counts, aerosol optical depth, and cloud effective radius) to investigate the correlation between biomass-burning aerosols and regional climate. In addition, the potential impacts of biomass-burning aerosols on regional radiation budget, cloud microphysics, and rainfall distribution are also discussed in this study.

The study domain covers 85°-143°E and 8°-44°N. The northern Indochina is the main biomass-burning region in the dowmain according to satellite data. Analysis of the Niño3.4 sea surface temperature (SST) anomaly and the fire counts in north Indochina, we proposed three climate scenarios associated with fire activites: (A) years with extreme biomass-burning activity associated to El/La Niño climate; (B) years with strong biomass-burning activity under normal climate, and (C) years with weak biomass-burning activity under normal climate. For the scenario A, the years of 2008 and 2011 are typical examples showing weak fire activities corresponding to low Niño3.4 SST. An overwhelming northeast monsoon extends its influence to the South China Sea and Indochina. Meanwhile, the tropical easterlies at 850hPa moves toward northwest. As a result, moist air converges over Indochina, setting an unfavorable condition for biomass burning. In contrast, in 2010, the northeast monsoon shows weaker than climate average due to El Niño climate. The overall climate pattern of 2010 represents a favorable environment for biomass burning. For the scenario B, the year of 2007 shows no correlation to Niño3.4 SST but strong biomass-burning activity were observed. The location of the Pacific High plays an important role in this scenario. When the Pacific High extends westerly to Asian continent, it obstructs continental cold High from moving southward. The wind pattern over Indochina is dominated by southwester. As a result, stronger biomass-burning activity was observed. For the scenario C, the years of 2003 and 2005 showed weak biomass-burning activities under normal climate. A common climate pattern for these two years is that more moist air transported from the Indian Ocean. .

Regarding to the transport of biomass-burning aerosols, we found that the years (i.e. 2008 and 2011 as examples) with weak fire activity are also showing an adverse long-range transport mechanism. In contrast, for strong biomass-burning activity year (i.e. 2007), the large-scale circulation accompanied with orographic lefting can help polluted airmass aloft to higher level and long-range tranport within westerlies.

The radiative and water-cycle effects of biomass-burning aerosols are also investigated in this study. The estimates of aerosol direct radiative forcing at the top of atmosphere for strong and weak biomass years are -13.36 ~ -16.24 Wm-2 and -11.78 Wm-2 ~ -9.64 Wm-2, respectively, showing two order greater than global average of -0.27 Wm-2. In addition to aerosol direct effect, we also assessed the indirect effect. We found that the increase of biomass-burning aerosols can alter the cloud microphysics, in terms of cloud droplet size and cloud fraction. In a normal climate condition, the biomass-burning aerosols tend to decrese cloud droplet size and clould fraction, which in turns reducing precipitation amount or delaing the precipitation time.
關鍵字(中) ★ 生質燃燒
★ 氣候
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 相關文獻回顧 4
2.1 生質燃燒氣膠排放及物化特性 4
2.2 氣膠輻射效應 5
(a)氣膠與輻射交互作用下之輻射驅動力 5
(b)氣膠與雲交互作用下之輻射驅動力 6
2.3 生質燃燒對氣候之衝擊 6
2.4中南半島生質燃燒之前人研究 7
第三章 研究方法 10
3.1 NASA Goddard Earth Observing System(GEOS-5) 10
3.2 MERRAero氣膠再分析資料 12
3.3 MODIS 氣膠與雲觀測資料 14
3.4 MODIS火點網格資料 15
(a)衛星位置誤差修正火點像素數資料: 15
(b)雲覆蓋誤差修正火點像素數資料: 16
(c)平均火點輻射能量(FRP): 16
(d)平均雲量: 16
3.5 全球氣候降水計畫(GPCP) 17
3.6 全球氣膠監測網(AERONET) 17
3.7 赤道太平洋海表面溫度 18
四.結果與討論 19
4.1 MERRAero與MODIS AOD資料比較 19
4.2中南半島三月份氣候平均特徵 20
4.3 不同氣候特徵下之生質燃燒活動 22
(a)與Niño3.4海溫高相關之生質燃燒事件年 22
(b)與Niño3.4海溫低相關之強生質燃燒事件 23
(c)與Niño3.4海溫低相關之弱生質燃燒事件 24
4.4生質燃燒氣膠傳輸年際特徵 25
4.5對區域輻射收支與雲微物理衝擊之初探 26
(a)氣膠直接輻射效應 27
(b)氣膠與雲微物理和降雨 27
五.總結與未來展望 30
5.1 總結 30
5.2 未來展望 31
參考文獻 33
附錄一 87
參考文獻 王聖翔(2007),亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用,國立中央大學大氣物理研究博士論文。
林能暉、蔡錫祺、王家麟、李崇德、許桂榮、王聖翔(2012),鹿林山背景測站科技研究及操作維護計畫專案工作計書,行政院環境保護署。
姜善鑫(1991),甲烷和氣候, 科學月刊 22(2):146-147。
Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeor., 4, 1147-1167.
Allen, R. J., and S. C. Sherwood (2010), Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM, J. Geophys. Res., 37(7), doi:10.1029/2010gl042759.
Andreae, M. O., C. D Jones, and P. M. Cox (2005), Strong present-day aerosol cooling implies a hot future, Nature, 435(3671), 1187–1190.
Angert, A., S. Biraud, C. Bonfils, C. C. Henning, W. Buermann, J. Pinzon, C. J. Tucker, and I. Fung (2005), Drier summers cancel out the CO2 uptake enhancement induced by warmer springs, Proceedings of the National Academy of Sciences of the United States of America., 102(31), 10823-10827, doi:10.1073/pnas.0501647102.
Babu, S.S., J. P. Chaubey, K. K. Moorthy, M. M. Gogoi, S. K. Kompalli, V. Sreekanth, S. P. Bagare, B. C. Bhatt, V. Gaur, T. P. Prabhu, S. S. Ningombam (2011), High altitude (4520 m amsl) measurements of black carbon aerosols over western Himalayas: seasonal heterogeneity and source apportionment. J. Geophys. Res., 116(D24), doi:10.1029/2011jd016722.
Ballhorn, U., F. Siegert, M. Mason, and S. Limin (2009), Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands, Proceedings of the National Academy of Sciences of the United States of America., 106(50), 21213-21218, doi:10.1073/pnas.0906457106.
Brown, M. E., J. E. Pinzon, K. Didan, J. T. Morisette, and C. J. Tucker (2006), Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Transactions on Geoscience and Remote Sensing. 44(7): 1787-179.
Carslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala (2010), A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys., 10, 1701-1737, doi:10.5194/acp-10-1701-2010.
Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hoffman (1992), Climate forcing by anthropogenic aerosols. Science., 255, 423-430, doi:10.1126/science.255.5043.423.
Chen, S.-H., S.-H. Wang, and M. Waylonis (2010), Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects, J. Geophys. Res., 115(D21), doi:10.1029/2010jd014158.
Chylek, P., and J. Wong (2005), Effect of absorbing aerosol on global radiation budget, Geophys. Res. Lett., 22, 929 – 931.
Chin M., T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets (2009), Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements, Ann. Geophys., 27, 3439-3464, doi:10.5194/angeo-27-3439-2009.
Chin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci., 59, 461-483.
Chin, M., R. B. Rood, S.-J. Lin, J. F. Müller, and A. M. Thompson (2000), Atmospheric sulfur cycle in the global mdel GOCART: Model description and global properties, J. Geophys. Res., 105, 24,661-24,687, 2000.
Chuang M. T., C. T. Lee, Charles C. K. Chou, N. H. Lin, G. R. Sheu, J. L. Wang, S. C. Chang, S. H. Wang (2014), Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin, Atmospheric Environment, 89, 507-516, doi:10.1016/j.atmosenv.2013.11.066.
Colarco, P., A. da Silva, M. Chin, and T. Diehl (2010), Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, J. Geophys. Res., 115(D14), doi:10.1029/2009jd012820.
Darmenov, A., and A. da Silva (2013), The Quick Fire Emissions Dataset(QFED)- Documentation of versions 2.1, 2.2 and 2.4, NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM-2013-104606, Vol. 32, 183 pp. Draft Document.
Detlef P. van Vuuren, and K. Riahi (2010), The relationship between short-term emissions and long-term concentration targets, Climatic Change, 104(3-4), 793-801, doi:10.1007/s10584-010-0004-6.
Diehl, T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne (2012), Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments, Atmos. Chem. Phys. Discuss., 12, 24895-24954, doi:10.5194/acpd-12-24895-2012.
Dubovik, O., A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.
Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, and C. P. Rinsland (2007), Global budget of CO, 1988–1997: Source estimates and validation with a global model, J. Geophys. Res., 112(D22), doi:10.1029/2007jd008459.
Feingold, G. (2005), On smoke suppression of clouds in Amazonia, Geophys. Res. Lett., 32(2), doi:10.1029/2004gl021369.
Flannigan, M. D., B. D. Amiro, K. A. Logan, B. J. Stocks, and B. M. Wotton (2006), Forest Fires and Climate Change in the 21ST Century, Mitigation and Adaptation Strategies for Global Change, 11(4), 847-859, doi:10.1007/s11027-005-9020-7.
Flannigan, MD, MA Krawchuck, Groot de, Wotton WJ, BM and LM Gowman (2009), Implications of changing climate for global wildland fire, International Journal of Wildland Fire, 18, 483-507.
Flannigan, MD, JA Logan, BD Amiro, WR Skinner, and BJ Stocks (2005), Future area burned in Canada. Climatic Change, 72, 1-16.
Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman (2003), An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sensing of Environment, 87(2-3), 273-282, doi:10.1016/s0034-4257(03)00184-6.
Giglio, L., J. T. Randerson, G. R. van der Werf, P.S. Kasibhatla, G. J. Collatz, D. C. Morton, and R. S. DeFries (2010), Assessingvariability and long-term trends in burned area by mergingmultiple satellite fire products, Biogeosciences, 7, 1171–1186,doi:10.5194/bg-7-1171-2010.
Giglio, L., G. R. van der Werf, J. T. Randerson, G. J. Collatz, and P. S. Kasibhatla (2006), Global estimation of burned area usingMODIS active fire observations, Atmos. Chem. Phys., 6, 957–974, doi:10.5194/acp-6-957-2006.
Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. N. Holben, O. Dubovik, and, S.J. Lin (2001), Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, 20,255-20,273.
Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4), 513, doi:10.1029/1999rg000078.
Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The software package OPAC, Bull. Amer. Met. Society, 79, 831-844.
Holben B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET - A federated instrument network and data archive for aerosol characterization, Rem. Sens. Environ., 66, 1-16.
Huang, K., J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S. C. Tsay, and Y. F. Lam (2013), Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA, Atmospheric Environment, 78, 291-302, doi:10.1016/j.atmosenv.2012.03.048.
Huang, L., R. Fu, and J. H. Jiang (2014), Impacts of fire emissions and transport pathways on the interannual variation of CO in the tropical upper troposphere, Atmospheric Chemistry and Physics, 14(8), 4087-4099, doi:10.5194/acp-14-4087-2014.
Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu (2009), Improving the global precipitation record: GPCP Version 2.1, Geophysical Research Letters, 36(17), doi:10.1029/2009gl040000.
Hyslop, N. P. (2009), Impaired visibility: the air pollution people see, Atmospheric Environment, 43(1), 182-195, doi:10.1016/j.atmosenv.2008.09.067.
Intergovernmental Panel on Climate Change (IPCC) (2013), Climate Change 2013, Working Group I Contribution to the IPCC Fifth Assessment Report: The Physical Science Basis Summary for Policymakers.
Intergovernmental Panel on Climate Change (IPCC) (2013), Climate Change 2013, Working Group I Contribution to the IPCC Fifth Assessment Report: Clouds and Aerosols.
Jacobson, M. Z. (2002), Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107(D19), doi:10.1029/2001jd001376.
Jacobson, M. Z. (2004), The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles, Geophysical Research Letters, 31(2), doi:10.1029/2003gl018448.
Jacobson, M. Z., J. H. Seinfeld, G. R. Carmichael, and D.G. Streets (2004), The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles. Geophysical Research Letters : doi: 10.1029/2003GL018448. issn: 0094-8276.
Kaiser, J. W., A. Heil, M. O. Andreae, A. Benedetti, N. Chubarova, L. Jones, J. J. Morcrette, M. Razinger, M. G. Schultz, M. Suttie, and G. R. van der Werf (2012), Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554, doi:10.5194/bg-9-527-2012.
Kaufman Y. J., P. V. Hobbs, V. W. J. H. Kirchhoff, P. Artaxo, L.A. Remer, B. N. Holben, M.D. King, D. E. Ward, E. M. Prins, K. M. Longo, L. F. Mattos, C. A. Nobre, J. D. Spinhirne, Q. Ji, A. M. Thompson, J.F. Gleason, and S. A. Christopher (1998), Smoke, clouds, and radiation—Brazil (SCAR-B) experiment, J. Geophys. Res., 103, 31783-31808.
Kim, D., M. Chin, H. Bian, Q. Tan, M. E. Brown, T. Zheng, R. You, T. Diehl, P. Ginoux, and T. Kucsera (2013), The effect of the dynamic surface bareness on dust source function, emission, and distribution, J. Geophys. Res., doi:10.1002/jgrd.50062.
Koch, D. and A. D. Del Genio (2010), Black carbon semi-direct effects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10, 7685-7696, doi:10.5194/acp-10-7685-2010.
Lamarque, J. F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi, and D. P. van Vuuren (2010), Historical(1850–2000)gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017-7039, doi:10.5194/acp-10-7017-2010.
Lamarque, J. F., F. Dentener, J. McConnell, C. U. Ro, M. Shaw, R. Vet, D. Bergmann, P. Cameron-Smith, R. Doherty, G. Faluvegi, S. J. Ghan, B. Josse, Y. H. Lee, I. A. MacKenzie, D. Plummer, D. T. Shindell, D. S. Stevenson, S. Strode, and G. Zeng (2013), Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation historical and projected changes, Atmos. Chem. Phys., 13, 7997-8018, doi:10.5194/acp-13-7997-2013.
Lamarque, J. F., D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L .W. Horowitz, Y. H. Lee, I.A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. Rumbold, M. Schulz, R.B. Skeie, D.S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng (2013), The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179-206, doi:10.5194/gmd-6-179-2013.
Lee, D., Y. C. Sud, L. Oreopoulos, K. M. Kim, W. K. Lau, and I. S. Kang (2013), Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmospheric Chemistry and Physics Discussions, 13(12), 32885-32923, doi:10.5194/acpd-13-32885-2013.
Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101(D14), 19411, doi:10.1029/95jd03426.
Levine J. S., W. R. Cofer, D. R. Cahoon, and EL. Winstead (1995), Biomass burning: a driver for global change, Environ Science and Technology, vol29, pp120A-125A.
Lin, C. Y., H. M. Hsu, Y. H. Lee, C. H. Kuo, Y. F. Sheng, and D. A. Chu (2009), A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmos. Chem. Phys., 9, 7901-7911, doi:10.5194/acp-9-7901-2009.
Lin, N. H., S. C. Tsay, H. B. Maring, M. C. Yen, G. R. Sheu, S. H. Wang, K. H. Chi, M. T. Chuang, C. F. Ou-Yang, J. S. Fu, J. S. Reid, C. T. Lee, L. C. Wang, J. L. Wang, N. Hsu, A. M. Sayer, B. N. Holben, Y. C. Chu, X. A. Nguyen, K. Sopajaree, S. J. Chen, M. T. Cheng, B. J. Tsuang, C. J. Tsai, C. M. Peng, R. C. Schnell, T. Conway, C. T. Chang, K. S. Lin, Y.I. Tsai, W.J. Lee, S.C. Chang, J.J. Liu, W.L. Chiang, S.J. Huang, T.H. Lin, and G.R. Liu (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmos. Env., 78, 1-19, doi:10.1016/j.atmosenv.2013.04.066
Livesey, N. J., J. A. Logan, M. L. Santee, J. W. Waters, R. M. Doherty, W. G. Read, L. Froidevaux, J. H. Jiang (2013), Interrelated variations of O3, CO and deep convection in the tropical/subtropical upper troposphere observed by the Aura Microwave Limb Sounder MLS during 2004–2011, Atmos. Chem. Phys., 13, 579-598, doi:10.5194/acp-13-579-2013.
Martins, J. V., P. Artaxo, C. Liousse, J. S. Reid, P. V. Hobbs, and Y. J. Kaufman (1998), Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil, J. Geophys. Res., 103(D24), 32041, doi:10.1029/98jd02593.
Mishchenko, M. I., L. D. Travis, R. A. Kahn, and R. A. West (1997), Modeling phase functions for dustlike tropospheric aerosols using a mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102, 16831-16847, doi:10.1029/96JD02110.
Oltmans, S. J. (2004), Tropospheric ozone over the North Pacific from ozonesonde observations, J. Geophys. Res., 109(D15), doi:10.1029/2003jd003466.
Oman, L. D., J. R. Ziemke, A. R. Douglass, D. W. Waugh, C. Lang, J. M. Rodriguez, and J. E. Nielsen (2011), The response of tropical tropospheric ozone to ENSO, Geophysical Research Letters, 38(13), doi:10.1029/2011gl047865.
Page, S. E., F. Siegert, J. O. Rieley, H. V., Boehm, A. Jayak, and S. Limin (2002), The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, vol 420.
Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta (2008), Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005, J. Geophys. Res., 113(D12), doi:10.1029/2007jd009511.
Perry, K. D., T. A. Cahill, R. C. Schnell, and J. M. Harris (1999), Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 104(D15), 18521, doi:10.1029/1998jd100083.
Persad, G. G., Y. Ming, and V. Ramaswamy (2012), Tropical Tropospheric-Only Responses to Absorbing Aerosols, Journal of Climate, 25(7), 2471-2480, doi:10.1175/jcli-d-11-00122.1.
Raes, F., H. Liao, W. T. Chen, and J. H. Seinfeld (2010), Atmospheric chemistry-climate feedbacks, J. Geophys. Res., 115(D12), doi:10.1029/2009jd013300.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, Science, 294(5549), 2119-2124, doi:10.1126/science.1064034.
Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton (2012), Global burned area and biomass burning emissions from small fires, J. Geophys. Res., 117(G4), doi:10.1029/2012jg002128.
Running, S. W. (2006), Is global warming causing more, larger wildfires?, Science, 313(5789), 927-928, doi:10.1126/science.1130370.
Sakaeda, N., R. Wood, and P. J. Rasch (2011), Direct and semidirect aerosol effects of southern African biomass burning aerosol, J. Geophys. Res., 116(D12), doi:10.1029/2010jd015540.
Schnetzler, C. C., G. J. S. Bluth, A. J. Krueger, and L. S. Walter (1997), A proposed volcanic sulfur dioxide index(VSI), J. Geophys. Res., 102(B9), 20087, doi:10.1029/97jb01142.
Schultz, M. G., A. Heil, J. J. Hoelzemann, A. Spessa, K. Thonicke, J. Goldammer, A. C. Held, J. M. Pereira, and M. van het Bolscher (2008), Global Wildland Fire Emissions from 1960 to 2000, Global Biogeochem. Cyc., 22, GB2002, doi:10.1029/2007GB003031.
Schwartz J, Neas LM (2000), Fine particles are more strongly associated than coarse particles with acute respiratory health effects in school children, Epidemiology 11:6–10.
Twomey, S. (1977), Influence of pollution on shortwave albedo of clouds, J. Atmos.Sci., 34, 1149–1152.
Tucker, C., J. Pinzon, M. Brown, D. Slayback, E. Pak, R. Mahoney, E. Vermote, and N. El Saleous (2005), An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26(20), 4485-4498, doi:10.1080/01431160500168686.
Van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano, Jr. (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmospheric Chemistry and Physics, 6, 3423–3441.
Wendisch, M., O. Hellmuth, A. Ansmann, J. Heintzenberg, R. Engelmann, D. Althausen, H. Eichler, D. Müller, M. Hu, and Y. Zhang (2008), Radiative and dynamic effects of absorbing aerosol particles over the Pearl River Delta, China, Atmospheric Environment, 42(25), 6405-6416, doi:10.1016/j.atmosenv.2008.02.033.
Westerling, A. L., H.G. Hidalgo, D. R. Cayan, and T. W. Swetnam (2006), Warming and earlier spring increases western U.S. Forest wildfire activity, Science 313:940–943. doi:10.1126/science.1128834.
Wurzler, S., M. Simmel, K. Diehl, T. Hennig, H. Herrmann, Y. Iinuma, K. Lehmann, A. Massling, F. Stratmann, A. Wiedensohler, G. Zech, K. Zeromskiene, R. Posselt, K. Hungershöfer, T. Trautmann, M. O. Andreae, D. Chand, U. Dussek, G. P. Frank, G. Helas, R. S. Parmar, O. Schmid, T. Winterrath, M. Welling, J. Trentmann, H.-F. Graf, B. Langmann, F. Nober and C (2004), Textor, Impact of vegetation fires on composition and circulation of the atmosphere(EFEU), The EGGS., 9, 14–17(available from http://www.the-eggs.org).
Yen, M. C., C. M. Peng, T. C. Chen, C. S. Chen, N. H. Lin, R. Y. Tzeng, Y. A. Lee, and C. C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50, doi:10.1016/j.atmosenv.2012.11.015.
Yoshimori, M., and A. J. Broccoli (2008), Equilibrium Response of an Atmosphere–Mixed Layer Ocean Model to Different Radiative Forcing Agents: Global and Zonal Mean Response, Journal of Climate, 21(17), 4399-4423, doi:10.1175/2008jcli2172.1.
Yu, H., M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, doi:10.1029/2009jd013364.
Zhang, L., D. J. Jacob, K. F. Boersma, D. A. Jaffe, J. R. Olson, K. W. Bowman, J. R. Worden, A. M. Thompson, M. A. Avery, R. C. Cohen, J. E. Dibb, F. M. Flock, H. E. Fuelberg, L. G. Huey, W. W. McMillan, H. B. Singh, and A. J. Weinheimer (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, doi:10.5194/acp-8-6117-2008.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明