博碩士論文 101621008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:75.101.211.110
姓名 鍾宜娟(Yi-Chuan Chung)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 使用WRF理想模組討論颮線系統與山脈地形之交互作用-水收支及降水效率研究
相關論文
★ 地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究★ 桃園大圳灌區降雨量之研究分析
★ 颱風事件下之集水區逕流模擬★ 台灣地區降水型態分類之研究:層狀降水與對流降水型態
★ 地形降水對於環境條件與地形特性之敏感度測試:3維理想地形模擬研究★ 2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ 雷達推估降雨於石門水庫霞雲集水區之流量模擬研究
★ 納莉颱風(2001)之水收支分析★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究
★ 懸浮微粒數量濃度對梅雨鋒面降水影響之敏感度研究★ 台灣地區極端降雨颱風之環境特徵合成分析
★ 納莉颱風(2001)之位渦收支分析★ 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較
★ 西北太平洋熱帶氣旋生成之多尺度分析★ 颮線與山脈地形的交互作用:理想模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究利用WRF模式模擬一颮線系統,首先探討其在通過一理想鐘形山脈(山頂高度兩公里)的過程中,颮線系統內水收支及降水效率如何受理想化地形的影響而變化。先在Eulerian framework 下進行討論,將颮線系統發展的過程分為成熟期、迎風坡、過山期、背風面及消散期等不同時期。結果發現,當颮線系統由成熟期演變至迎風坡及過山階段時,由於系統受到地形抬升的影響,水氣輻合及凝結率皆增強,使得降水效率從原來的50.42%增加至約58.71%;而背風面的下沉氣流使得水氣輻散增加並伴隨有強烈蒸發作用,導致降水效率下降,最後颮線系統逐漸減弱至消散。接著從Quasi-Lagrangian framework的角度進行討論,以每十分鐘一筆的模式資料追隨颮線系統運動以得到降水效率、凝結率、凝固率及蒸發率在瞬時的變化。結果指出降水效率及凝結率在迎風坡皆隨著時間增加,至背風面後快速下降,但由於山岳重力波向上傳輸的作用將水相粒子往更高層傳輸而有凝固現象,使得凝固率在背風面反而有增加的趨勢。若將討論範圍縮小至颮線系統的對流降水區域甚至是單一對流胞時,則此現象更為顯著。
然後進行將地形高度降低至原來高度一半(山頂高度一公里)及沒有地形的兩組敏感度實驗測試。在一公里地形高度的實驗中,由於地形降低使得颮線系統在迎風面受地形抬升影響而增強的作用較不明顯,降水效率增加的幅度也減少。但也因為地形的阻礙較小讓低層冷池得以過山,即使到背風面颮線系統的前緣仍可持續激發出新生對流胞,系統維持較長一段時間才消散。而在沒有地形的敏感度實驗中,則是因為沒有地形的抬升作用,因此於原來有地形實驗中的迎風坡位置,降水效率不但沒有隨時間而增加,反而隨著颮線系統的減弱而有逐漸下降之趨勢。
摘要(英) In this study, idealized numerical simulations of a squall line traversing a sinusoidal mountain ridge are conducted using the Weather Research and Forcasting model, version 3.2, with 2-km horizontal grid size. The vapor and condensate budgets are examined, and the temporal variation of four microphysics ratios, including precipitation efficiency(PE), condensation ratio(CR), deposition ratio(DR), and evaporation ratio(ER) are calculated during and after the period when squall line interacts with the terrain.
In an Eulerian framework, the whole life cycle of the squall line can be divided into five stages, which include mature, over-windward-slope, over-mountain, over-lee-side and, dissipating stage. When the squall line moves from mature stage to over-windward-slope stage, the corresponding PE increases from 50.42% to 58.71%, due to the increasing horizontal flux convergence of vapor and strong condensation of liquid water. Then, a Quasi-Lagrangian framework is adopted to investigate the “in situ” orographic forcing of the mountain on the microphysics process by following the eastward propagation of the squall line. The result shows that the high PE observed on the windward slope is caused by the increase of cloud condensation and the orographic lifting. On the other hand, the low PE observed on the lee side is a result of strong increase of raindrop evaporation and the decrease of cloud condensation. The vertically propagating gravity waves above the terrain is helpful to transport hydrometeors upward and then let the hydrometeors transform into ice critical or snow, so the DR also shows an increasing trend on the lee side.
Two sensitivity experiments with different terrain height are performed to examine the effect of terrain on microphysics ratios. The half-terrain sensitivity experiment shows that because of the reduced orographic lifting effect, the condensation on the windward slope also decreases, which further results in lower PE. But the lower mountain height makes the blocking- effect occurred at mountain ridge become less significant, so the squall line can traverse the mountain ridge more smoothly and maintain a stronger convective system on the lee side compared to the full-terrain control run. Finally, the result from no-terrain sensitivity experiment shows that without the orographic lifting effect, all of the characteristics associated with the interaction between squall line and terrain disappear.
關鍵字(中) ★ 颮線系統
★ 降水效率
關鍵字(英) ★ Squall line
★ Precipitation efficiency
論文目次 摘要……………………………………………………………………………I
Abstract………………………………………………………………………Ⅱ
致謝……………………………………………………………………………Ⅳ
目錄……………………………………………………………………………Ⅴ
圖表目錄………………………………………………………………………Ⅶ
一、 緒論……………………………………………………………………1
1-1 文獻回顧………………………………………………………………1
1-2 研究動機………………………………………………………………5
1-3 論文架構………………………………………………………………6
二、 模式概述………………………………………………………………7
2-1 模式簡介………………………………………………………………7
2-2 模式設定………………………………………………………………8
2-3 暖包設定………………………………………………………………9
2-4 模式初始場設定………………………………………………………9
2-5 理想山脈地形設定…………………………………………………11
三、 研究方法……………………………………………………………13
3-1 水氣及水凝結物收支計算…………………………………………13
3-2 雲微物理比率計算…………………………………………………15
3-3 Froude number………………………………………………………17
四、 模擬結果……………………………………………………………18
五、 水收支及雲微物理比率分析………………………………………22
5-1 Eulerian Framework 觀點分析……………………………………22
5-2 Quasi-Lagrangian framework 觀點分析…………………………27
六、 敏感度實驗測試……………………………………………………32
6-1 地形降至一半之敏感度實驗………………………………………32
6-2 去除山脈地形之敏感度實驗………………………………………36
七、 總結…………………………………………………………………39
附錄……………………………………………………………………42
參考文獻………………………………………………………………43
圖表……………………………………………………………………45
參考文獻 Holton,2004 : An Introduction to Atmospheric Dynamic. Academic Press.(text book).
周俊宇,2012:西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理
結構特徵及參數法方案比較。國立中央大學大氣物理研究所碩士論文。
林昌鴻,2014: 颮線與山脈地形的交互作用:理想模擬研究。國立中央大學
大氣物理研究所碩士論文。
Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). PartII: Water budget. J. Atmos. Sci., 63,43–64.
Bolton, D, 1980: The Computation of Equivalent Potential Temperature. Mon.Wea. Rev., 108, 1046–1053.
Fovell, R. G. and Tan, P.-H.,1998: The temporal behavior of numerically simulated multicell-type storms, Part II: The convective cell life cycle and cell regen- eration. Mon. Wea. Rev., 126,551-577.
Frame, J. W. and P. M. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134,1919-1941.
Hong, S.-Y., H.-L. Pan, 1996: Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322–2339.
Huang, H.-L., M.-J. Yang, and C.-H. Sui, 2014: Water Budget and Precipitation Efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71,112–129, doi:10.1175/JAS-D-13-053.1.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameteri-zation of the snow field in a cloud model.J.Appl. Meteor.,22,1065–1092.
——, Deal, R.L., Kulie, M.S., 1998. Mechanisms of cell regeneration,propagation, and development within two-dimensional multicell storms. J.Atmos. Sci. 55, 1867 – 1886.
——, S.-Y. Chen, Christopher M. H., C.-Y. Huang, 2005:Control Parameters for the Influence of a Mesoscale Mountain Range on Cyclone Track Continuityand Deflection. J. Atmos. Sci., 62, 1849–1866.
——, Joyce, L.E., 2001. A further study of mechanisms of cell regeneration,development and propagation within a two-dimensional multicell storm. J. Atmos. Sci. 58, 2957 – 2988.
Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part VIII: A model for the ‘‘seeder-feeder’’process in warm-frontal rainbands. J. Atmos. Sci., 40,1185–1206.
S.-Y. Hong and J.-O. J. Lim, “The WRF single-moment 6-class microphysics scheme (WSM6),” Journal of the Korean Meteorological Society, vol. 42, no. 2, pp. 129–151, 2006.
Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 4358–4370.
——, X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency.J.Atmos. Sci., 64, 4506–4513.
Yang, M.-J., and R.A. Houze, Jr., 1995: Multicell squall line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123,641-661.
——, S. A. Braun, and D.-S. Chen, 2011: Water budget of Typhoon Nari(2001). Mon. Wea. Rev., 139, 3809-3828, doi: 10.1175/MWR-D-10-05090.1.
指導教授 楊明仁(Ming-Jen Yang) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明