博碩士論文 101621012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.210.28.227
姓名 姚春伃(Chun-yu Yao)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 臺北測站之統計降尺度定量降水研究
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 利用MM5模式評估台灣地區風能蘊藏量之研究★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案
★ 全球氣候模式(NCAR CCM2/3)模擬東亞氣候變遷之研究★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ MM5對東亞地區梅雨季的模擬及其可預報度之研究
★ 宜蘭地區秋冬季豪大雨特性之研究★ 台灣東南部地區局部環流與邊界層特性之研究
★ 台灣東南部地區複雜地形局部環流的模擬研究★ 宜蘭地區豪雨個案之研究
★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討★ 冬季雹暴個案之分析與模擬
★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討★ 東亞大氣年際變化之研究與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了統計降尺度定量降水推估的改進和未來朝向氣候變遷降水研究之目的。因此本研究利用綜觀天氣分型結合邏輯和非線性迴歸建立統計降尺度降水模式並評估其在台北測站之效用與改進。
本研究使用了臺北測站的地面觀測資料和NCEP高空再分析資料來建構降水模式,研究包含下列兩個主要部分: (1)自動天氣分型,及(2)發展降水天氣型之降水推估模式。天氣分型的結果可以歸納出7類和降水有關的天氣型態,分別為冷季的冷鋒、滯留鋒Ⅰ、滯留鋒Ⅱ、暖季滯留鋒、熱帶低壓、局地熱對流及颱風。結果顯示,有進行天氣分型且搭配邏輯迴歸的機率預報和非線性之降水量推估與不進行天氣分型的降水推估結果相比是有改進的,尤其是小雨(<7.5mm)推估為優、良的比例有5~10%提升,大雨(>32.5mm)因變異度大改善有限甚至不理想。天氣類型中暖季滯留鋒為間歇性的中尺度對流降水,統計模式對於大部分的移動性對流降水較難以掌握,因測站還未能反應移動的鋒面對流系統天氣變量時,對流系統已帶來降水,導致迴歸效果不佳。檢驗後發現,熱帶低壓容易與輕颱混淆,且颱風不適用此天氣分類方法,導致檢驗時的降水推估表現不佳,除此之外其他天氣類型都有良好的改善。為改善颱風類型的降水推估,獨立挑出颱風個案改以路徑分類做測試,結果有很好的改善。
本研究利用綜觀天氣分型搭配颱風路徑分類所建立的統計降尺度日降水估計模式,其在台北測站之應用成效良好,未來經進一步改善,應可以應用於氣候變遷降水推估研究上。
摘要(英) The purpose of this study is to improve statistical downscaling of quantitative precipitation forecast and use these daily rainfall simulation models to project changes in frequency and magnitude of future daily rainfall. Therefore, an automated synoptic weather typing and stepwise cumulative logit/nonlinear regression analyses were employed to estimate the occurrence and quantity of daily rainfall events in Taipei station.
Taipei station hourly and daily observed and NCEP reanalysis weather data for each year of 1992-2012 without 1997 are used in this study. The analyses are divided into four steps: (i) automatic synoptic weather typing, (ii) identification of weather types associated with rainfall events, (iii) development of within-weather-type rainfall simulation models, and (iv) validation of the rainfall simulation models using an independent dataset. The 7 rainfall-related weather types are cold front, quasi-stationary front I, quasi-stationary front II in cold season (November- April), quasi-stationary front III, tropical low, local convection and typhoon in warm season (May-October). The results show that within-weather-type rainfall simulation models demonstrated significant skill in the discrimination and prediction of the occurrence and quantity of daily rainfall events with exceptions of localized convective storms. The percentage of excellent and good simulations for the light rainfall events improved by 5~10%, but the heavy rainfall simulations have no significant improvement because of greater variability. At the time of raining, the weather variables at the station didn’t reflect the characteristics of the moving convective system, so statistical downscaling models cannot capture moving and mesoscale convective rainfall. Typhoon is not suitable for automatic synoptic weather typing and it is easily mix up with tropical low. Then we use typhoon path classification methods and the simulation results will be better.
The results from this study show that a combination of synoptic weather typing and cumulative logit/nonlinear regression procedures can be useful to simulate historical daily rainfall occurrence and quantity in Taipei station. If there are more improvements in these models, the statistical downscaling method can be applied to study occurrence and quantity of daily rainfall events under climate change in the future.
關鍵字(中) ★ 自動天氣分型
★ 邏輯迴歸
★ 統計降尺度
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
一、 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究背景及動機 6
二、 資料及分析方法 7
2.1 資料來源及處理 7
2.1.1資料來源 7
2.1.2資料處理 8
2.2分析方法 9
2.2.1 自動天氣分型 9
2.2.1.1主成分分析 10
2.2.1.2分層聚類過程 13
2.2.1.3不分層聚類過程 – 判別分析 16
2.2.2 確定和降水有相關的天氣類型 16
2.2.3降水迴歸模型 17
2.2.4檢驗日降水迴歸模型 22
2.2.5 邏輯迴歸模型檢驗方法 23
三、 結果 26
3.1 降水有關的天氣類型 26
3.2 日降水概率的模擬 31
3.3 日降水量模擬 33
3.4 日降水量推估結果 34
四、 結論與討論 42
參考文獻 48

參考文獻 王政忠、陳雲蘭,2009:「最小絕對壓縮挑選機制(LASSO)於天氣分析迴歸預報的應用」,天氣分析與預報研討會論文彙編,中央氣象局, 314-319頁。
吳明進、陳明志、朱寶信,2001:「應用類神經網路於台灣區域降水的降尺度研究」。第七屆全國大氣科學研討會論文彙編, 356-361,台北,2001年9月25-27日。
夏裕龍、吳明進,2007:「應用遺傳演算法∕類神經網路於臺灣地區天氣預報」。2007年臺灣地球科學聯合學術研討會論文彙編,A4-P-03。
陳雲蘭、王政忠與張琬玉,2009:「統計迴歸模式季內時間取樣差異測試」,九十八年度中央氣象局自行研發計畫成果報告第 CWB 98-1A-03 號 。
王惠民,2003 :「利用降水機率統計預報指引之預報因子分析對降水分季之探討」。氣象學報,第四十五卷,第一期,37~45頁。
林品芳、張保亮與周仲島,2012:「弱綜觀環境下台灣午後對流特徵及其客預報」。大氣科學,40,77-107。
王時鼎,鄭俠與趙友夔,1983:「臺灣天氣變化之自然季節」。大氣科學,第十一期,101-120。
李柏宏,2011:「適用於推估臺灣日均溫度之統計降尺度方法」。氣象學報,第四十八卷,第三期,59-71頁。
王濟川、郭志剛,Logistic迴歸模型-方法及應用,初版,台北,五南出版社,民國92年。
彭昭英,SAS與統計分析,14版,儒林出版社,台北,20-12頁,民國96年 。
劉家豪、張庭槐與洪忠和,2010: 「邏輯斯迴歸分析在降雨機率預報上的應用及校驗分析」,天氣分析與預報研討會論文彙編,中央氣象局,臺灣,臺北,258-263頁。
李清縢、盧孟明,2012: 「從氣候觀點探討影響臺灣颱風的定義問題」。氣象學報,第四十八卷,第四期,25-38頁。
沈來明,統計分析與SAS應用,第一版,九州出版社,臺北,561-563頁,民國100年。
蕭文龍,多變量分析最佳入門實用書,初版,台北:碁峰資訊,8-5、8-6頁,民國96年。
Antolik,M.S. , 2000: An overview of the National Weather Service’s centralized statistical quantitative precipitation forcasts. J. Hydrol., 239 , 306-337.
Applequist, Scott, Gregory E. Gahrs, Richard L. Pfeffer, Xu-Feng Niu, 2002: Comparison of Methodologies for Probabilistic Quantitative Precipitation Forecasting*. Wea. Forecasting, 17, 783–799.
Buishand, T. A., M. V. Shabalova, and T. Brandsma, 2004: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Climate, 17, 1816–1827.
Chen, G. T. J., and C. P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942-953.
Chen, Ching-Sen, Yi-Leng Chen, 2003: The Rainfall Characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Cheng, Chad Shouquan, Guilong Li, Qian Li, Heather Auld, 2010: A Synoptic Weather Typing Approach to Simulate Daily Rainfall and Extremes in Ontario, Canada: Potential for Climate Change Projections. J. Appl. Meteor. Climatol., 49, 845–866.
Cheng, C. S., H. Auld, G. Li, J. Klaassen, B. Tugwood, and Q. Li, 2004: An automated synoptic typing procedure to predict freezing rain: An application to Ottawa, Ontario. Wea. Forecasting, 19, 751–768.
——, and Coauthors, 2007a: A synoptic climatological approach to assess climatic impact on air quality in south-central Canada. Part I: Historical analysis. Water Air Soil Pollut., 182, 131–148.
——, and Coauthors, 2007b:A synoptic climatological approach to assess climatic impact on air quality in south-central Canada. Part II: Future estimates. Water Air Soil Pollut., 182, 117–130.
——,H. Auld, G. Li, J. Klaassen, and Q. Li, 2007c: Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios. Nat. Hazards Earth Syst. Sci., 7, 71–87.
——, and Coauthors, 2008a: Differential and combined impacts of extreme temperatures and air pollution on human mortality in south–central Canada. Part I: Historical analysis. Air Qual. Atmos. Health, 1, 209–222.
——, and Coauthors, 2008b: Differential and combined impacts of extreme temperatures and air pollution on human mortality in south–central Canada. Part II: Future estimates. Air Qual. Atmos. Health, 1, 223–235.
Chen, C.-S., and J.-M. Huang, 1999: A numerical study of precipitation characteristics over Taiwan Island during the winter season. Meteor. Atmos. Phys., 70, 167–183.
Davis RE and Walker DR, 1992: An upper-air synoptic climatology of the western United States. Journal of Climate, S: 1449–1467.
Esteban, M. A., and Y. L. Chen, 2008: The impact of trade wind strength on precipitation over the windward side of the island of Hawaii. Mon. Wea. Rev., 136, 913–928.
Fealy, R., and J. Sweeney, 2007: Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalized linear modelling approach. Int. J. Climatol., 27, 2083–2094.
Hall, T., H. E. Brooks, and C. A. Doswell, 1999: Precipitation forecasting using a neural network. Wea. Forecasting, 14, 338–345.
Hotelling, H., 1933. Analysis of a Complex of Statistical Variables Into Principal Components, Journal of Educational Psychology, volume 24, pages 417-441 and 498-520.
Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. Terr. Atmos. Oceanic Sci., 5, 169–197.
Kalkstein L.S.,and Corrigan P., 1986: A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations. Ann Assoc Am Geogr 76: 381–395.
Lorenz, E.N., 1956: Empirical orthogonal functions and statistical weather prediction.Science Report 1, Statistical Forecasting Project, Department of Meteorology, MIT, 49 pp.
McGregor, G. R., 1999: Winter ischaemic heart disease deaths in Birmingham, United Kingdom: A synoptic climatological analysis. Climate Res., 13, 17–31.
MacQueen, J. B., 1967: Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297.
Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at NMC. Wea. Forecasting, 10, 498–511.
Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572.
Shen, S. S. P., P. Dzikowski, G. Li, and D. Griffith, 2001: Interpolation of 1961–97 daily temperature and precipitation data onto Alberta polygons of ecodistrict and soil landscapes of Canada. J. Appl. Meteor., 40, 2162–2177.
Vislocky, R. L., and G. Y. Young, 1989: The use of perfect prog forecasts to improve model output statistics forecasts of precipitation probability. Wea. Forecasting, 4, 202–209.
Walker, S. H., and D. B. Duncan, 1967: Estimation of the probability of an event as a function of several independent variables. Biometrika, 54, 167–179.
Wilby RL, Dawson CW, Barrow EM ,2002 :SDSM a decision support tool for the assessment of regional climate change impacts. Env Mod Soft 17: 147–159.
Wilby, R.L., S.P. Charles, E. Zorita, B. Timbal, P. Whetton,and L.O. Mearns,2004. Guidelines for use of climate scenarios developed from statistical downscaling methods,TGICA IPCC August 8, 1-27.
Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.
Wilks, D. S., 1995: Statistical Mathods in the atmospheric Sciences. Academic Press, 418 pp.
Yarnal B, Comrie AC, Frakes B, Brown DP., 2001.:Developments and prospects in synoptic climatology. International Journal of Climatology 21: 1923–1950.
指導教授 林沛練、曾仁佑(Pay-Liam Lin Ren-Yow Tzeng) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明