博碩士論文 101621602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.207.78.157
姓名 薩克汀(Christian Mark Salvador)  查詢紙本館藏   畢業系所 地球系統科學國際研究生博士學位學程
論文名稱 都市空氣污染對一個亞熱帶森林地區有機氣膠組成之干擾
(Perturbation of Urban Air Pollution on the Composition of Organic Aerosols in a Subtropical Forestry Area)
相關論文
★ Retrievals of Temperature/Moisture Parameters from AMSUand Its Application in Typhoon Monitoring★ 應用SSM/I衛星資料於西太平洋颱風特性之分析
★ 應用衛星資料於熱帶氣旋之環境場分析★ 衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用
★ 應用SSM/I衛星資料分析桃芝與納莉颱風之降雨及海氣參數的變化★ 利用Spot 4衛星的Vegetation資料比較NDVI, ARVI, 及AFRI植被指數與氣溶膠厚度之關係
★ 中華衛星一號海洋水色照相儀資料之大氣校正及其應用★ 應用衛星資料分析颱風降雨與颱風強度變化之關係
★ 衛星資料反演海氣參數在乾旱預警之研究★ 應用SSM/I衛星資料於颱風中心定位及最大風速估算
★ 應用衛星資料分析海氣參數與颱風強度變化之關係★ 衛星資料在夏季午後對流潛勢環境之初步分析
★ MODIS在生質燃燒監測之應用研究★ 應用SSM/I衛星觀測資料估算颱風定量降水
★ AMSU衛星資料反演大氣溫濕剖面及其在颱風強度估算上之應用★ 利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物放射源為一主要大氣氣膠來源之一,特別是在森林區域。當這些自然形成的氣膠顆粒在大氣當中進行反應,不但會改變其化學組成,也會改變氣膠對能見度以及太陽輻射總量的影響。其中一個造成改變的因子為人為汙染源,當人為汙染物質隨著氣流被運送至森林中,就可能與當中的生物氣膠進行反應,而促進生物二次有機氣膠生成。因此,了解人為活動對生物二次有機氣膠生成之影響,有助於預測此途徑生成之氣膠顆粒對大氣氣膠總量的影響。本研究建立二次有機氣膠追蹤物的分析方法,利用熱脫附質子轉移反應飛行時間質譜儀(TD-PTR-TOF-MS)測量有機氣膠追蹤物,藉以說明在副熱帶森林地區,二次有機氣膠生成受城市汙染源的影響。相較於一般質譜儀,質子轉移反應質譜儀有(1)靈敏度高(偵測極限達pptv);(2)可進行多種有機化學物質的分析,以及(3)檢測速度快等優點,因此非常適合用於大氣中有機氣膠顆粒之追蹤。
起初,本研究利用常見的有機氣膠追蹤物(如生質燃燒追蹤物:左旋葡萄糖)進行評估,發現質子轉移反應飛行時間質譜儀訊號與各物種在濾紙上沉積量呈線性關係。然而,我們也同時發現有許多碎裂片段存在於質子轉移反應質譜儀的漂浮管柱中。接著,於2013年8月在台北氣膠與輻射觀測站(Taipei Aerosol and Radiation Observatory, TARO)進行氣膠樣本(PM1)採集,利用質子轉移反應飛行時間質譜儀進行分析後,將結果與使用DRI 2001 碳分析儀分析結果做比對。發現質子轉移反應飛行時間質譜儀所測得之總有機物氣膠量(TOM)小於DRI 2001 碳分析儀分析結果27%。由第一階段實驗結果判斷此低估可能來自於少部分碎裂物質於漂浮管中未被偵測,以及揮發性有機物的損失所造成。儘管如此,兩種儀器的分析結果呈良好的相關性(R2=0.8578)。質譜圖顯示鄰苯二甲酸(phthalic acid)及戊二酸(glutaric acid)為氣膠樣本中主要物質,分別占7.0及9.4%的總有機物氣膠量。此階段實驗結果所測得之兩種人為汙染追蹤物,將用來協助評估人為汙染源運輸至生物放射源區對當地大氣組成分的影響。

熱脫附質子轉移反應飛行時間質譜儀架設於台灣副熱帶溪頭森林地區,探討此區二次有機氣膠來源,以及其微物理過程之影響。得到圖譜結果後,利用正定矩陣分解方法(PMF)對結果進行分析,顯示都市污染源(30%)、生物源(7%)及生質燃燒源(7%)為此區主要二次有機氣膠貢獻源。都市及生質燃燒追蹤物,如:鄰苯二甲酸、左旋葡萄糖、琥珀酸主導有機物質量濃度,因為人為放射源會產生相對較大的顆粒,促使生物源放射顆粒易附著於其上,進而抑制生物氣膠的生長,改變其物理特性。另外,採樣地區高溼度特性也對氣膠顆粒的形成,以及化學組成分的分配扮演著重要角色,直接影響有機物質存在於氣膠顆粒中的量。
除了典型人為污染追蹤物分析,氣膠質量濃度、以及其他化學物質分析結果顯示:森林中,有機氮化物(organonitrates,ONs)也是重要的化學組成分之一。ONs主要由環境中揮發性有機物質與氮氧化物進行化學反應而生成的產物。在熱脫附質子轉移反應飛行時間質譜儀分析方法中,利用硝酸異丙酯(isopropyl nitrate, IPN)作為ONs標準品,可在m/z於45.992得NO2+訊號值來表示ONs的濃度,實驗顯示20%的IPN可轉換成NO2+,且NO2+的訊號值與ONs濃度有良好的線性關係。 分析溪頭PM1氣膠樣本結果發現ONs濃度約占總有機物氣膠量約4%,此結果可能低於實際值五倍,因為受到高濕度干擾,ONs易分解成其他物質,而造成低估的結果。ONs與N100 nm的相關性暗示ONs濃度可能影響氣膠的生長,此外inferred branching值為5.41%指出ONs可能為氮氧化物在溪頭森林環境中反應的最終產物,終止一系列氮氧化物和OHx在大氣中繼續生成臭氧或其他有機物質的反應。  
  總結,研究結果顯示人為污染追蹤物(都市、生質燃燒及有機氮化物)約佔有機氣膠總量的59%,表示人為活動對台灣地區副熱帶森林中有機氣膠生成有重要影響。利用熱脫附質子轉移反應飛行時間質譜儀測定氣膠中有機追蹤物,不但有助於了解二次有機氣膠的來源和生成機制,也提供關於在生物環境中重要大氣反應的資訊。

摘要(英) Biogenic environment, particularly forest, is among the main source regions of atmospheric aerosols. Changes in the natural formation of particulate matter in these regions may inherently lead to alteration in visibility conditions and in radiative forcing of climate. One of the principle causes of the deviation from the pristine condition is the transport of anthropogenic pollutants to the forestry areas. Probing the influence of the human-related activities on biogenic secondary organic aerosols may provide a projection of global aerosol budget in the coming years. In this study, a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) was developed to comprehensively characterize the particle phase organic markers to account the major sources of anthropogenic perturbation (e.g. urban) in a subtropical forest. PTR-TOF-MS as a detector of organic compounds in particle phase is highly beneficial due to its high sensitivity, a wide range of organic compounds detected and rapid mixing ratio quantification scheme.
The TD-PTR-TOF-MS was initially evaluated against standard compounds that are typically utilized as organic markers for source attribution for atmospheric aerosols (e.g. levoglucosan for biomass burning). The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a wide range of mass loading of specific species on filters. However, it was found that significant fragmentation occurred in the drift tube of the PTR-MS. The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The inter-comparison with DRI thermo-optical carbon analyzer indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the fragmentation in PTR drift tube. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly with the TOM determined by DRI analyzer (R2 = 0.8578). Among the detected ions, phthalic acid and glutaric acid were identified based on the fragmentation pattern obtained from the mass spectra of the authentic substances. Accordingly, it was estimated that phthalic acid and glutaric acid contributed 7.0 and 9.4 %, respectively, to the TOM. The molecular fingerprints of anthropogenic tracers obtained in this urban site were deemed valuable as they can be used to account for the transport of pollutants to a biogenic site.
The TD-PTR-TOF-MS was then deployed at a subtropical forestry station, located in the Xitou Experimental Forest of National Taiwan University in central Taiwan, to probe the composition of organic aerosols (OA). The comprehensive identification of the major extracted peaks and the subsequent source apportionment using Positive Matrix Factorization (PMF) denoted three prominent source clusters of OA mass in Xitou forest. These include urban (30%), biogenic (7%) and biomass burning (7%). Urban and biomass burning tracers such as phthalic acid, levoglucosan, and succinic acid dominated the overall organic mass concentration which clearly indicated the impact of anthropogenic activities in the forest. Moreover, the presence of unnatural pollutants in the forest possibly inhibited the growth of particles through the scavenging of the nuclei particles. The elevated mixing ratio of the tracers observed in this study also hinted the role of the relative humidity (over 90% during the campaign) in the formation and partitioning of these compounds into the particle phase, thereby directly altering the fraction of the organic matter in the submicron particles.
In addition to the typical anthropogenic organic markers, the total mass concentration and molecular identity of specific organonitrates were analyzed using the TD-PTR-TOF-MS. Organonitrates (ONs) are the oxidation products of the volatile organic compounds in the presence of NOx. The peak of NO2+ (m/z 45.992) served as the surrogate of the sum of mixing ratio of organonitrates where isopropyl nitrate (IPN) was utilized to account the degree of fragmentation of ONs to NO2+. The results showed a linear response of TD-PTR-TOF-MS against a wide range of mass loading of ONs and 20% of the IPN dissociates to form NO2+. Analysis of the submicron particles from Xitou forest indicated that the organonitrates only accounted for 4% of the total organic matter, probably underestimated by 5 folds or more. Such inference was justified by the elevated relative humidity (> 90%) that caused the dissociation of ONs in the particle phase. The relationship of organonitrates to some environmental components revealed the impact of ONs in some of the crucial atmospheric processes in the forest. The association of organonitrates to the number concentration of nuclei mode particles (N100 nm) hinted the contribution of ONs to aerosol growth. Furthermore, an inferred branching ratio of 5.41% using the true mass concentration of organonitrates indicated that the ONs were a significant sink of NOx and suppressed the formation of ozone and organic oxidation products in Xitou forest through chain termination of the HOx cycle.
Overall, this study revealed that anthropogenic tracers (urban + biomass burning + organonitrate) contributed a significant fraction (?59%) of the OA burden in a subtropical forestry area, clearly indicating the strong influence of human-related activities. The characterization of the organic markers in aerosols using the TD-PTR-TOF-MS not only uncover the sources and formation of the secondary organic aerosols but also provided insights on perturbation of anthropogenic pollutants on critical atmospheric phenomena in a biogenic environment.
關鍵字(中) ★ 大氣氣溶膠 關鍵字(英) ★ Aerosol Sciences
★ Earth System Science
★ Atmospheric
★ PTR-TOF-MS
論文目次 Table of Contents
Abstract vi
摘要 ix
Abbreviations and Nomenclatures xi
List of Figures xiv
List of Tables xv
Table of Contents xvi
Chapter 1 Introduction 1
1.1 Atmospheric conditions of some of the remaining virgin sites 2
1.2 Impact of human processes on atmospheric particles 6
1.3 Analytical tools for identification of organic tracers in aerosol phase 8
1.4 Application of PTR-MS in molecular identification of organic aerosols 11
1.5 Organonitrates as potential anthropogenic tracer 15
1.6 Thesis objectives and organization 19
Chapter 2 Profiling of Submicron Organic Aerosols Using Thermal Carbon Analyzer and Proton-Transfer-Reaction Mass Spectrometer 22
2.1 Introduction 22
2.2 Materials and Methods 24
2.2.1 Instrumentation 24
2.2.2 Peak identification and quantification procedure 26
2.2.3 Blank and standard/tracer compound analysis 27
2.2.4 Analysis of aerosol samples collected from an urban environment 29
2.3 Results and Discussion 31
2.3.1 Blank and authentic standard analysis 31
2.3.1.1 Inter-comparison of organic aerosol analysis with DRI carbon analyzer and TD-PTR-TOF-MS.. 36
2.3.2.2 Analysis on specific ion peaks 42
Chapter 3 Evidences of Anthropogenic Perturbation in an Experimental Forest 49
3.1 Introduction 49
3.2 Experimental Methods 50
3.2.1 Site description and instrumentation 50
3.2.2 In-lab analysis of filter samples 51
3.3 Results and Discussion 55
3.3.1 Analysis of major peaks from TD-PTR-MS and their source profile 55
3.3.1.1 Urban tracers 62
3.3.1.2 Biogenic markers 69
3.3.1.3 Biomass burning related compounds 76
3.3.2 Source Apportionment using Positive Matrix Factorization (PMF) 82
3.4 Summary and implications 85
Chapter 4 Submicron Organic Nitrate Particles in a Subtropical Forest 90
4.1 Introduction 91
4.2 Experimental Methods 92
4.2.1 Response of PTR-TOF-MS to organonitrates 92
4.2.2 Sampling site and instrumentation 92
4.2.3 Offline physio-chemical analysis of filters 94
4.3 Results and Discussion 95
4.3.1 Assessment of NO2+ peak (m/z/45.992) 95
4.3.2 Analysis of organonitrates of an experimental forest 99
4.4 Summary and Conclusion 110
Chapter 5 Conclusion and Future Direction 112
References 117
APPENDICES 129
Appendix 5-1. Standard gas phase analysis using PTR-TOF-MS. 129
Appendix 5-2. Time series profile of the top 19 ion peaks during the field campaign in Taipei, Taiwan, in August 2013. 130
Appendix 5-3. Possible structures of the major ion peaks identified from the TD-PTR-TOF-MS spectra of the submicron aerosol particles collected in Taipei, Taiwan 131
Appendix 5-3. Possible structures of the major ion peaks identified from the TD-PTR-TOF-MS spectra of the submicron aerosol particles collected in Taipei, Taiwan [Continued] 132
Appendix 5-4. Proposed reaction mechanism of fragmentation of aldehydes inside the drift tube of PTR-MS 133
Appendix 5-5. Wind speed and direction measured during the fall campaign (2015) 134
Appendix 5-6. Chemical structure of aliphatic carboxylic acids measured in this study 135
Appendix 5-7. Results of the analysis of monosaccharides in PM1 obtained from Xitou forest using TD-PTR-TOF-MS and Ion Chromatography..................................................................................................................136
Appendix 5-8. Time series profile of the factor profile determined using PMF. 137
Appendix 5-9. Particle phase tracers from submicron aerosol particles in Xitou forest. 138
Appendix 5-10. HYSPLIT backward trajectory of air mass arriving Xitou forest during Autumn 2015 141
Appendix 5-11. Correlation analysis of Organonitrate and NOz 142
Appendix 5-12. Calculation of nitrate branching ratio (α) 143
Appendix 5-13. Q plot from the positive matrix factorization analysis...........................................................144
Appendix 5-14. Observed and predicted scatter data from the base model results of positive matrix factorization analysis........................................................................................................................................145
參考文獻 Andreae, M. O. (2007), Aerosols Before Pollution, Science, 315(5808), 50-51, doi:10.1126/science.1136529.
Aoki, N., S. Inomata, and H. Tanimoto (2007), Detection of C-1-C-5 alkyl nitrates by proton transfer reaction time-of-flight mass spectrometry, International Journal of Mass Spectrometry, 263(1), 12-21, doi:10.1016/j.ijms.2006.11.018.
Artaxo, P., L. V. Rizzo, J. F. Brito, H. M. J. Barbosa, A. Arana, E. T. Sena, G. G. Cirino, W. Bastos, S. T. Martin, and M. O. Andreae (2013), Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday Discussions, 165(0), 203-235, doi:10.1039/C3FD00052D.
Aruffo, E., et al. (2014), Aircraft observations of the lower troposphere above a megacity: Alkyl nitrate and ozone chemistry, Atmospheric Environment, 94, 479-488, doi:10.1016/j.atmosenv.2014.05.040.
Bajtarevic, A., et al. (2009), Noninvasive detection of lung cancer by analysis of exhaled breath, Bmc Cancer, 9, 16, doi:10.1186/1471-2407-9-348.
Baker, J. W., and D. M. Easty (1952), 217. Hydrolytic decomposition of esters of nitric acid. Part I. General experimental techniques. Alkaline hydrolysis and neutral solvolysis of methyl, ethyl, isopropyl, and tert.-butyl nitrates in aqueous alcohol, Journal of the Chemical Society (Resumed)(0), 1193-1207, doi:10.1039/JR9520001193.
Balducci, C., and A. Cecinato (2010), Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?, Atmospheric Environment, 44(5), 652-659, doi:10.1016/j.atmosenv.2009.11.015.
Bauer, H., M. Claeys, R. Vermeylen, E. Schueller, G. Weinke, A. Berger, and H. Puxbaum (2008), Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmospheric Environment, 42(3), 588-593, doi:http://dx.doi.org/10.1016/j.atmosenv.2007.10.013.
Beaver, M. R., et al. (2012), Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmos. Chem. Phys., 12(13), 5773-5785, doi:10.5194/acp-12-5773-2012.
Berkemeier, T., M. Ammann, T. F. Mentel, U. Poschl, and M. Shiraiwa (2016), Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis, Environmental Science & Technology, doi:10.1021/acs.est.6b00961.
Betts, R. A., C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy (2016), El Nino and a record CO2 rise, Nature Clim. Change, advance online publication, doi:10.1038/nclimate3063
http://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate3063.html#supplementary-information.
Biasioli, F., F. Gasperi, C. Yeretzian, and T. D. Mark (2011), PTR-MS monitoring of VOCs and BVOCs in food science and technology, TrAC Trends in Analytical Chemistry, 30(7), 968-977, doi:http://dx.doi.org/10.1016/j.trac.2011.03.009.
Blake, R. S., P. S. Monks, and A. M. Ellis (2009), Proton-Transfer Reaction Mass Spectrometry, Chemical Reviews, 109(3), 861-896, doi:10.1021/cr800364q.
Borduas, N., G. da Silva, J. G. Murphy, and J. P. D. Abbatt (2015), Experimental and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric Amides with OH Radicals: Kinetics, Products, and Mechanisms, The Journal of Physical Chemistry A, 119(19), 4298-4308, doi:10.1021/jp503759f.
Brown, S. G., T. Lee, P. T. Roberts, and J. L. Collett (2013), Variations in the OM/OC ratio of urban organic aerosol next to a major roadway, Journal of the Air & Waste Management Association, 63(12), 1422-1433, doi:10.1080/10962247.2013.826602.
Browne, E. C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmospheric Chemistry and Physics, 13(9), 4543-4562, doi:10.5194/acp-13-4543-2013.
Bruns, E. A., V. Perraud, A. Zelenyuk, M. J. Ezell, S. N. Johnson, Y. Yu, D. Imre, B. J. Finlayson-Pitts, and M. L. Alexander (2010), Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates, Environmental Science & Technology, 44(3), 1056-1061, doi:10.1021/es9029864.
Cahill, T. M. (2010), Size-Resolved Organic Speciation of Wintertime Aerosols in California’s Central Valley, Environmental Science & Technology, 44(7), 2315-2321, doi:10.1021/es902936v.
Cahill, T. M., V. Y. Seaman, M. J. Charles, R. Holzinger, and A. H. Goldstein (2006), Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California, Journal of Geophysical Research-Atmospheres, 111(D16), 14, doi:10.1029/2006jd007178.
Cai, W., et al. (2014), Increasing frequency of extreme El Nino events due to greenhouse warming, Nature Clim. Change, 4(2), 111-116, doi:10.1038/nclimate2100
Canagaratna, M. R., et al. (2007), Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, 26(2), 185-222, doi:10.1002/mas.20115.
Chatterjee, A., A. Adak, A. K. Singh, M. K. Srivastava, S. K. Ghosh, S. Tiwari, P. C. S. Devara, and S. Raha (2010), Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India, Plos One, 5(6), 20, doi:10.1371/journal.pone.0011122.
Chaubey, J. P., K. K. Moorthy, S. S. Babu, and M. M. Gogoi (2013), Spatio-temporal variations in aerosol properties over the oceanic regions between coastal India and Antarctica, Journal of Atmospheric and Solar-Terrestrial Physics, 104(0), 18-28, doi:http://dx.doi.org/10.1016/j.jastp.2013.08.004.
Chen, S. C., S. C. Hsu, C. J. Tsai, C. C. K. Chou, N. H. Lin, C. T. Lee, G. D. Roam, and D. Y. H. Pui (2013), Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia, Atmospheric Environment, 78, 154-162, doi:10.1016/j.atmosenv.2012.05.029.
Cheng, C. H., C. Y. Hung, C. P. Chen, and C. W. Pei (2013), Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan, Bot. Stud., 54, 9, doi:10.1186/1999-3110-54-60.
Cheng, Y., J. R. Brook, S.-M. Li, and A. Leithead (2011), Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning, Atmospheric Environment, 45(39), 7105-7112, doi:http://dx.doi.org/10.1016/j.atmosenv.2011.09.036.
Cheng, Y., K. B. He, F. K. Duan, M. Zheng, Y. L. Ma, and J. H. Tan (2009), Measurement of semivolatile carbonaceous aerosols and its implications: A review, Environment International, 35(3), 674-681, doi:http://dx.doi.org/10.1016/j.envint.2008.11.007.
Chio, C. P., M. T. Cheng, and C. F. Wang (2004), Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan, Atmospheric Environment, 38(39), 6893-6905, doi:10.1016/j.atmosenv.2004.08.041.
Chou, C. C. K., et al. (2010), Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan, Atmospheric Chemistry and Physics, 10(19), 9563-9578, doi:10.5194/acp-10-9563-2010.
Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell (1993), THE DRI THERMAL OPTICAL REFLECTANCE CARBON ANALYSIS SYSTEM - DESCRIPTION, EVALUATION AND APPLICATIONS IN UNITED-STATES AIR-QUALITY STUDIES, Atmospheric Environment Part a-General Topics, 27(8), 1185-1201, doi:10.1016/0960-1686(93)90245-t.
Chow, J. C., J. Z. Yu, J. G. Watson, S. S. Hang Ho, T. L. Bohannan, M. D. Hays, and K. K. Fung (2007), The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review, Journal of Environmental Science and Health, Part A, 42(11), 1521-1541, doi:10.1080/10934520701513365.
Chuang, M.-T., C. C. K. Chou, K. Sopajaree, N.-H. Lin, J.-L. Wang, G.-R. Sheu, Y.-J. Chang, and C.-T. Lee (2013), Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment, Atmospheric Environment, 78, 72-81, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.06.056.
Cong, Z., K. Kawamura, S. Kang, and P. Fu (2015), Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids, Scientific Reports, 5, 9580, doi:10.1038/srep09580
http://www.nature.com/articles/srep09580#supplementary-information.
Dal Maso, M., A. Hyvarinen, M. Komppula, P. Tunved, V. M. Kerminen, H. Lihavainen, Y. Viisanen, H. C. Hansson, and M. Kulmala (2008), Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation, Tellus Ser. B-Chem. Phys. Meteorol., 60(4), 495-508, doi:10.1111/j.1600-0889.2008.00366.x.
Darer, A. I., N. C. Cole-Filipiak, A. E. O′Connor, and M. J. Elrod (2011), Formation and Stability of Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates, Environmental Science & Technology, 45(5), 1895-1902, doi:10.1021/es103797z.
Day, D. A., M. B. Dillon, P. J. Wooldridge, J. A. Thornton, R. S. Rosen, E. C. Wood, and R. C. Cohen (2003), On alkyl nitrates, O-3, and the "missing NOy", Journal of Geophysical Research-Atmospheres, 108(D16), 10, doi:10.1029/2003jd003685.
Day, D. A., S. Liu, L. M. Russell, and P. J. Ziemann (2010), Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California, Atmospheric Environment, 44(16), 1970-1979, doi:10.1016/j.atmosenv.2010.02.045.
de Gouw, J., and C. Warneke (2007), Measurements of volatile organic compounds in the earth′s atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, 26(2), 223-257, doi:10.1002/mas.20119.
Deshpande, C. G., and A. K. Kamra (2014), Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard, J. Earth Syst. Sci., 123(1), 201-212.
Ding, X., M. Zheng, L. P. Yu, X. L. Zhang, R. J. Weber, B. Yan, A. G. Russell, E. S. Edgerton, and X. M. Wang (2008), Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States, Environmental Science & Technology, 42(14), 5171-5176, doi:10.1021/es7032636.
Eatough, D. J., R. W. Long, W. K. Modey, and N. L. Eatough (2003), Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge, Atmospheric Environment, 37(9–10), 1277-1292, doi:http://dx.doi.org/10.1016/S1352-2310(02)01020-8.
Eddingsaas, N. C., C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg (2012), alpha-pinene photooxidation under controlled chemical conditions - Part 2: SOA yield and composition in low- and high-NOx environments, Atmospheric Chemistry and Physics, 12(16), 7413-7427, doi:10.5194/acp-12-7413-2012.
Edtbauer, A., E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jurschik, M. Lanza, K. Breiev, L. Mark, and P. Sulzer (2014), Theory and practical examples of the quantification of CH4, CO, O2, and CO2 with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS), International Journal of Mass Spectrometry, 365–366, 10-14, doi:http://dx.doi.org/10.1016/j.ijms.2013.11.014
Ehn, M., et al. (2014), A large source of low-volatility secondary organic aerosol, Nature, 506(7489), 476-479, doi:10.1038/nature13032.
Eichler, P., M. Muller, B. D′Anna, and A. Wisthaler (2015), A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter, Atmospheric Measurement Techniques, 8(3), 1353-1360, doi:10.5194/amt-8-1353-2015.
Falkovich, A. H., and Y. Rudich (2001), Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS, Environmental Science & Technology, 35(11), 2326-2333, doi:10.1021/es000280i.
Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez (2010), Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6670-6675, doi:10.1073/pnas.0912340107.
Fountoukis, C., and A. Nenes (2007), ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+;Ca2+;Mg2+;NH4+;Na+;SO42-;NO3-;Cl;H2O aerosols, Atmos. Chem. Phys., 7(17), 4639-4659, doi:10.5194/acp-7-4639-2007.
Fry, J. L., et al. (2013), Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011, Atmospheric Chemistry and Physics, 13(17), 8585-8605, doi:10.5194/acp-13-8585-2013.
Fu, P. Q., et al. (2012), Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning, Atmospheric Chemistry and Physics, 12(18), 8359-8375, doi:10.5194/acp-12-8359-2012.
Fu, P. Q., K. Kawamura, K. Okuzawa, S. G. Aggarwal, G. H. Wang, Y. Kanaya, and Z. F. Wang (2008), Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain, Journal of Geophysical Research-Atmospheres, 113(D19), 20, doi:10.1029/2008jd009900.
Graham, B., O. L. Mayol-Bracero, P. Guyon, G. C. Roberts, S. Decesari, M. C. Facchini, P. Artaxo, W. Maenhaut, P. Koll, and M. O. Andreae (2002), Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS, Journal of Geophysical Research-Atmospheres, 107(D20), 16, doi:10.1029/2001jd000336.
Grover, B. D., M. Kleinman, N. L. Eatough, D. J. Eatough, R. A. Cary, P. K. Hopke, and W. E. Wilson (2008), Measurement of Fine Particulate Matter Nonvolatile and Semi-Volatile Organic Material with the Sunset Laboratory Carbon Aerosol Monitor, Journal of the Air & Waste Management Association (Air & Waste Management Association), 58(1), 72-77, doi:10.3155/1047-3289.58.1.72.
Han, J. S., K. J. Moon, S. J. Lee, Y. J. Kim, S. Y. Ryu, S. S. Cliff, and S. M. Yi (2006), Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia, Atmos. Chem. Phys., 6(1), 211-223, doi:10.5194/acp-6-211-2006
Han, Y., Y. Iwamoto, T. Nakayama, K. Kawamura, and M. Mochida (2014), Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan, Journal of Geophysical Research: Atmospheres, 119(1), 2013JD020390, doi:10.1002/2013JD020390.
Hansel, A. K., F. S. Ehrenhauser, N. K. Richards-Henderson, C. Anastasio, and K. T. Valsaraj (2015), Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation, Atmospheric Environment, 102, 43-51, doi:10.1016/j.atmosenv.2014.11.055.
Hartungen, E. v., A. Wisthaler, T. Mikoviny, D. Jaksch, E. Boscaini, P. J. Dunphy, and T. D. Mark (2004), Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: Determination of Henry′s law constants and axillary odour investigations, International Journal of Mass Spectrometry, 239(2–3), 243-248, doi:http://dx.doi.org/10.1016/j.ijms.2004.09.009.
Hawthorne, S. B., M. S. Krieger, D. J. Miller, and M. B. Mathiason (1989), COLLECTION AND QUANTITATION OF METHOXYLATED PHENOL TRACERS FOR ATMOSPHERIC-POLLUTION FROM RESIDENTIAL WOOD STOVES, Environmental Science & Technology, 23(4), 470-475, doi:10.1021/es00181a013.
Hays, M. D., and R. J. Lavrich (2007), Developments in direct thermal extraction gas chromatography-mass spectrometry of fine aerosols, TrAC Trends in Analytical Chemistry, 26(2), 88-102, doi:http://dx.doi.org/10.1016/j.trac.2006.08.007.
Helle?n, H., J. Dommen, A. Metzger, A. Gascho, J. Duplissy, T. Tritscher, A. S. H. Prevot, and U. Baltensperger (2008), Using Proton Transfer Reaction Mass Spectrometry for Online Analysis of Secondary Organic Aerosols, Environmental Science & Technology, 42(19), 7347-7353, doi:10.1021/es801279m.
Hersey, S. P., J. S. Craven, K. A. Schilling, A. R. Metcalf, A. Sorooshian, M. N. Chan, R. C. Flagan, and J. H. Seinfeld (2011), The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol, Atmos. Chem. Phys., 11(15), 7417-7443, doi:10.5194/acp-11-7417-2011.
Holman, J. P. (1972), Heat Transfer, McGraw-Hill, New York.
Holzinger, R., A. H. Goldstein, P. L. Hayes, J. L. Jimenez, and J. Timkovsky (2013), Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study, Atmos. Chem. Phys., 13(19), 10125-10141, doi:10.5194/acp-13-10125-2013.
Holzinger, R., A. Kasper-Giebl, M. Staudinger, G. Schauer, and T. Rockmann (2010a), Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS), Atmos. Chem. Phys., 10(20), 10111-10128, doi:10.5194/acp-10-10111-2010.
Holzinger, R., J. Williams, F. Herrmann, J. Lelieveld, N. M. Donahue, and T. Rockmann (2010b), Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols, Atmospheric Chemistry and Physics, 10(5), 2257-2267.
Hoyle, C. R., et al. (2011), A review of the anthropogenic influence on biogenic secondary organic aerosol, Atmos. Chem. Phys., 11(1), 321-343, doi:10.5194/acp-11-321-2011.
Hsieh, L.-Y., C.-L. Chen, M.-W. Wan, C.-H. Tsai, and Y. I. Tsai (2008), Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution, Atmospheric Environment, 42(28), 6836-6850, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.05.021.
Hsieh, L. Y., S. C. Kuo, C. L. Chen, and Y. I. Tsai (2007), Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol, Atmospheric Environment, 41(31), 6648-6661, doi:10.1016/j.atmosenv.2007.04.014.
Hsu, C.-L., C.-Y. Cheng, C.-T. Lee, and W.-H. Ding (2007), Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography–mass spectrometry, Talanta, 72(1), 199-205, doi:http://dx.doi.org/10.1016/j.talanta.2006.10.018.
Hu, Q.-H., Z.-Q. Xie, X.-M. Wang, H. Kang, and P. Zhang (2013), Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic, Sci. Rep., 3, doi:10.1038/srep03119
http://www.nature.com/srep/2013/131101/srep03119/abs/srep03119.html#supplementary-information.
Hughes, L. S., G. R. Cass, J. Gone, M. Ames, and I. Olmez (1998), Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area, Environmental Science & Technology, 32(9), 1153-1161, doi:10.1021/es970280r.
Iinuma, Y., G. Engling, H. Puxbaum, and H. Herrmann (2009), A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol, Atmospheric Environment, 43(6), 1367-1371, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.11.020.
Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop (2000), Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, 33(1-2), 49-70, doi:10.1080/027868200410840.
Jia, C., and S. Batterman (2010), A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air, International Journal of Environmental Research and Public Health, 7(7), 2903.
Jimenez, O. P., R. M. P. Pastor, and S. G. Alonso (2010), Assessment uncertainty associated to the analysis of organic compounds linked to particulate matter of atmospheric aerosols, Talanta, 80(3), 1121-1128, doi:http://dx.doi.org/10.1016/j.talanta.2009.08.036.
Kalberer, M., J. Yu, D. R. Cocker, R. C. Flagan, and J. H. Seinfeld (2000), Aerosol Formation in the Cyclohexene-Ozone System, Environmental Science & Technology, 34(23), 4894-4901, doi:10.1021/es001180f.
Kamens, R., M. Jang, C.-J. Chien, and K. Leach (1999), Aerosol Formation from the Reaction of α-Pinene and Ozone Using a Gas-Phase Kinetics-Aerosol Partitioning Model, Environmental Science & Technology, 33(9), 1430-1438, doi:10.1021/es980725r.
Kanakidou, M., et al. (2005), Organic aerosol and global climate modelling: a review, Atmospheric Chemistry and Physics, 5, 1053-1123.
Kanakidou, M., K. Tsigaridis, F. J. Dentener, and P. J. Crutzen (2000), Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation, Journal of Geophysical Research-Atmospheres, 105(D7), 9243-9254, doi:10.1029/1999jd901148.
Kanawade, V. P., B. T. Jobson, A. B. Guenther, M. E. Erupe, S. N. Pressley, S. N. Tripathi, and S. H. Lee (2011), Isoprene suppression of new particle formation in a mixed deciduous forest, Atmos. Chem. Phys., 11(12), 6013-6027, doi:10.5194/acp-11-6013-2011.
Kawamura, K., Y. Imai, and L. A. Barrie (2005), Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events, Atmospheric Environment, 39(4), 599-614, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.10.020.
Kawamura, K., and O. Yasui (2005), Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmospheric Environment, 39(10), 1945-1960, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.12.014.
Kecorius, S., et al. (2015), NOCTURNAL AEROSOL PARTICLE FORMATION IN THE NORTH CHINA PLAIN, Lithuanian Journal of Physics, 55(1), 44-53.
Kirkby, J., et al. (2011), Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476(7361), 429-433, doi:http://www.nature.com/nature/journal/v476/n7361/abs/nature10343.html#supplementary-information.
Kitanovski, Z., I. Grgic, R. Vermeylen, M. Claeys, and W. Maenhaut (2012), Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter, Journal of Chromatography A, 1268, 35-43, doi:10.1016/j.chroma.2012.10.021.
Koponen, I. K., A. Virkkula, R. Hillamo, V.-M. Kerminen, and M. Kulmala (2002), Number size distributions and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica, Journal of Geophysical Research: Atmospheres, 107(D24), 4753, doi:10.1029/2002JD002533.
Kroll, J. H., and J. H. Seinfeld (2008), Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmospheric Environment, 42(16), 3593-3624, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.01.003.
Kulmala, M., M. Dal Maso, J. M. Makela, L. Pirjola, M. Vakeva, P. Aalto, P. Miikkulainen, K. Hameri, and C. D. O′Dowd (2001), On the formation, growth and composition of nucleation mode particles, Tellus Ser. B-Chem. Phys. Meteorol., 53(4), 479-490, doi:10.1034/j.1600-0889.2001.530411.x.
Kyro, E. M., et al. (2014), Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula, Atmospheric Chemistry and Physics, 14(9), 4383-4396, doi:10.5194/acp-14-4383-2014.
Lane, D. A., S. S. Fielder, S. J. Townsend, N. J. Bunce, J. Zhu, L. Liu, B. Wiens, and P. Pond (1996), Atmospheric Photochemistry of Naphthalene: a Practical and Theoretical Approach, Polycyclic Aromatic Compounds, 9(1-4), 53-59, doi:10.1080/10406639608031201.
Laurent, J. P., and D. T. Allen (2004), Size distributions of organic functional groups in ambient aerosol collected in Houston, Texas, Aerosol Science and Technology, 38, 82-91, doi:10.1080/02786820390229561.
Lawson, S. J., P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski (2015), Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere, Atmos. Chem. Phys., 15(1), 223-240, doi:10.5194/acp-15-223-2015.
Lee, A., A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld (2006), Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, Journal of Geophysical Research-Atmospheres, 111(D17), 25, doi:10.1029/2006jd007050.
Lee, B. H., et al. (2016), Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets, Proceedings of the National Academy of Sciences of the United States of America, 113(6), 1516-1521, doi:10.1073/pnas.1508108113.
Lee, S. H., L. H. Young, D. R. Benson, T. Suni, M. Kulmala, H. Junninen, T. L. Campos, D. C. Rogers, and J. Jensen (2008), Observations of nighttime new particle formation in the troposphere, Journal of Geophysical Research-Atmospheres, 113(D10), 7, doi:10.1029/2007jd009351.
Li, J. J., G. H. Wang, X. M. Wang, J. J. Cao, T. Sun, C. L. Cheng, J. J. Meng, T. F. Hu, and S. X. Liu (2013a), Abundance, composition and source of atmospheric PM 2.5 at a remote site in the Tibetan Plateau, China, 2013, 65, doi:10.3402/tellusb.v65i0.20281.
Li, L., et al. (2013b), Concentration, distribution and variation of polar organic aerosol tracers in Ya′an, a middle-sized city in western China, Atmospheric Research, 120, 29-42, doi:10.1016/j.atmosres.2012.07.024.
Liggio, J., and S. M. Li (2006), Reactive uptake of pinonaldehyde on acidic aerosols, Journal of Geophysical Research-Atmospheres, 111(D24), 12, doi:10.1029/2005jd006978.
Lindinger, W., A. Hansel, and A. Jordan (1998a), On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, International Journal of Mass Spectrometry and Ion Processes, 173(3), 191-241, doi:http://dx.doi.org/10.1016/S0168-1176(97)00281-4.
Lindinger, W., A. Jordan, and A. Hansel (1998b), Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chemical Society Reviews, 27(5), 347-375, doi:10.1039/A827347Z.
Liu, D., J. Li, Y. Zhang, Y. Xu, X. Liu, P. Ding, C. Shen, Y. Chen, C. Tian, and G. Zhang (2013), The Use of Levoglucosan and Radiocarbon for Source Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East China, Environmental Science & Technology, 47(18), 10454-10461, doi:10.1021/es401250k.
Liu, S., J. E. Shilling, C. Song, N. Hiranuma, R. A. Zaveri, and L. M. Russell (2012), Hydrolysis of Organonitrate Functional Groups in Aerosol Particles, Aerosol Science and Technology, 46(12), 1359-1369, doi:10.1080/02786826.2012.716175.
Liu, S. C., C. Fu, C. J. Shiu, J. P. Chen, and F. Wu (2009), Temperature dependence of global precipitation extremes, Geophysical Research Letters, 36(17), doi:10.1029/2009GL040218.
Lunden, M. M., D. R. Black, M. McKay, K. L. Revzan, A. H. Goldstein, and N. J. Brown (2006), Characteristics of fine particle growth events observed above a forested ecosystem in the Sierra Nevada Mountains of California, Aerosol Science and Technology, 40(5), 373-388, doi:10.1080/02786820600631896.
Ma, Y., T. Luciani, R. A. Porter, A. T. Russell, D. Johnson, and G. Marston (2007), Organic acid formation in the gas-phase ozonolysis of alpha-pinene, Phys. Chem. Chem. Phys., 9(37), 5084-5087, doi:10.1039/b709880d.
Ma, Y., A. T. Russell, and G. Marston (2008), Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of [small alpha]-pinene, Phys. Chem. Chem. Phys., 10(29), 4294-4312, doi:10.1039/B803283A
Martin, S. T., et al. (2010), An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmospheric Chemistry and Physics, 10(23), 11415-11438, doi:10.5194/acp-10-11415-2010.
Mikoviny, T., L. Kaser, and A. Wisthaler (2010), Development and characterization of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS), Atmos. Meas. Tech., 3(3), 537-544, doi:10.5194/amt-3-537-2010.
Miyazaki, Y., J. Jung, P. Q. Fu, Y. Mizoguchi, K. Yamanoi, and K. Kawamura (2012), Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer, Journal of Geophysical Research-Atmospheres, 117, 12, doi:10.1029/2012jd018250.
Mkoma, S. L., and K. Kawamura (2013), Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons, Atmos. Chem. Phys., 13(4), 2235-2251, doi:10.5194/acp-13-2235-2013.
Muller, K., D. van Pinxteren, A. Plewka, B. Svrcina, H. Kramberger, D. Hofmann, K. Bachmann, and H. Herrmann (2005), Aerosol characterisation at the FEBUKO upwind station Goldlauter (II): Detailed organic chemical characterisation, Atmospheric Environment, 39(23-24), 4219-4231, doi:10.1016/j.atmosenv.2005.02.008.
Nicolas, J. F., J. Crespo, E. Yubero, R. Soler, A. Carratala, and E. Mantilla (2014), Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations, Science of The Total Environment, 466–467(0), 439-446, doi:http://dx.doi.org/10.1016/j.scitotenv.2013.07.060.
Nie, W., et al. (2014), Polluted dust promotes new particle formation and growth, Sci. Rep., 4, doi:10.1038/srep06634
http://www.nature.com/srep/2014/141016/srep06634/abs/srep06634.html#supplementary-information.
Noziere, B., et al. (2015a), The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chemical Reviews, doi:10.1021/cr5003485.
Noziere, B., et al. (2015b), The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chemical Reviews, 115(10), 3919-3983, doi:10.1021/cr5003485.
Ooki, A., K. Miura, and M. Uematsu (2003), The increase of biogenic sulfate aerosol and particle number in marine atmosphere over the northwestern North Pacific, J. Oceanogr., 59(6), 799-807, doi:10.1023/B:JOCE.0000009571.81193.5d.
Orasche, J., J. Schnelle-Kreis, G. Abbaszade, and R. Zimmermann (2011), Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species, Atmospheric Chemistry and Physics, 11(17), 8977-8993, doi:10.5194/acp-11-8977-2011.
Ortega, I. K., et al. (2012), New insights into nocturnal nucleation, Atmospheric Chemistry and Physics, 12(9), 4297-4312, doi:10.5194/acp-12-4297-2012.
Park, J.-H., A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger (2013), Active Atmosphere-Ecosystem Exchange of the Vast Majority of Detected Volatile Organic Compounds, Science, 341(6146), 643-647, doi:10.1126/science.1235053.
Perring, A. E., S. E. Pusede, and R. C. Cohen (2013), An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chemical Reviews, 113(8), 5848-5870, doi:10.1021/cr300520x.
Pietrogrande, M., D. Bacco, and S. Chiereghin (2013), GC/MS analysis of water-soluble organics in atmospheric aerosol: optimization of a solvent extraction procedure for simultaneous analysis of carboxylic acids and sugars, Anal Bioanal Chem, 405(2-3), 1095-1104, doi:10.1007/s00216-012-6592-4.
Pietrogrande, M. C., D. Bacco, M. Visentin, S. Ferrari, and V. Poluzzi (2014), Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns — Part 1: Low molecular weight carboxylic acids in cold seasons, Atmospheric Environment, 86, 164-175, doi:http://dx.doi.org/10.1016/j.atmosenv.2013.12.022.
Plewka, A., T. Gnauk, E. Bruggemann, and H. Herrmann (2006), Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany, Atmospheric Environment, 40, S103-S115, doi:10.1016/j.atmosenv.2005.09.090.
Pohlker, C., et al. (2012), Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon, Science, 337(6098), 1075-1078, doi:10.1126/science.1223264.
Pratt, K. A., and K. A. Prather (2012a), Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part I: Off-line mass spectrometry techniques, Mass Spectrometry Reviews, 31(1), 1-16, doi:10.1002/mas.20322.
Pratt, K. A., and K. A. Prather (2012b), Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: On-line mass spectrometry techniques, Mass Spectrometry Reviews, 31(1), 17-48, doi:10.1002/mas.20330.
Pye, H. O. T., et al. (2015), Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States, Environmental Science & Technology, 49(24), 14195-14203, doi:10.1021/acs.est.5b03738.
Rindelaub, J. D., K. M. McAvey, and P. B. Shepson (2015), The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis, Atmospheric Environment, 100(0), 193-201, doi:http://dx.doi.org/10.1016/j.atmosenv.2014.11.010.
Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M. O. Andreae, L. V. Gatti, and P. Artaxo (2004), Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations, Atmospheric Chemistry and Physics, 4, 2119-2143.
Rizzo, L. V., P. Artaxo, T. Karl, A. B. Guenther, and J. Greenberg (2010), Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia, Atmospheric Environment, 44(4), 503-511, doi:http://dx.doi.org/10.1016/j.atmosenv.2009.11.002.
Rollins, A. W., et al. (2012), Evidence for NOx Control over Nighttime SOA Formation, Science, 337(6099), 1210-1212, doi:10.1126/science.1221520.
Ritter, S. K. (2015), GLOBAL CO2 BREACHES 400 PPM, Chemical & Engineering News, 93(20), 28-28
Rollins, A. W., et al. (2009), Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields, Atmospheric Chemistry and Physics, 9(18), 6685-6703.
Rollins, A. W., et al. (2013), Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield, Journal of Geophysical Research-Atmospheres, 118(12), 6651-6662, doi:10.1002/jgrd.50522.
Rosen, R. S., E. C. Wood, P. J. Wooldridge, J. A. Thornton, D. A. Day, W. Kuster, E. J. Williams, B. T. Jobson, and R. C. Cohen (2004), Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O-3 and alkyl nitrate photochemistry, Journal of Geophysical Research-Atmospheres, 109(D7), 15, doi:10.1029/2003jd004227.
Salo, K., et al. (2011), Volatility of secondary organic aerosol during OH radical induced ageing, Atmospheric Chemistry and Physics, 11(21), 11055-11067, doi:10.5194/acp-11-11055-2011.
Salvador, C. M., and C. C. K. Chou (2014), Analysis of semi-volatile materials (SVM) in fine particulate matter, Atmospheric Environment, 95, 288-295, doi:http://dx.doi.org/10.1016/j.atmosenv.2014.06.046.
Salvador, C. M., T. T. Ho, C. C. K. Chou, M. J. Chen, W. R. Huang, and S. H. Huang (2016), Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS), Atmospheric Environment, 140, 565-575, doi:http://dx.doi.org/10.1016/j.atmosenv.2016.06.029.
Schaller, N., et al. (2016), Human influence on climate in the 2014 southern England winter floods and their impacts, Nature Clim. Change, advance online publication, doi:10.1038/nclimate2927
http://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate2927.html#supplementary-information.
Schauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit (1996), Source apportionment of airborne particulate matter using organic compounds as tracers, Atmospheric Environment, 30(22), 3837-3855, doi:10.1016/1352-2310(96)00085-4.
Seinfeld, J., and S. Pandis (2006), Atmospheric Chemistry and Physics: From Air pollution to Climate Change, Second Edition ed., John Wiley & Sons, New Jersey, USA.
Sellegri, K., M. Hanke, B. Umann, F. Arnold, and M. Kulmala (2005), Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST, Atmos. Chem. Phys., 5(2), 373-384, doi:10.5194/acp-5-373-2005.
Shakya, K. M., P. Louchouarn, and R. J. Griffin (2011), Lignin-Derived Phenols in Houston Aerosols: Implications for Natural Background Sources, Environmental Science & Technology, 45(19), 8268-8275, doi:10.1021/es201668y.
Shrivastava, M. K., R. Subramanian, W. F. Rogge, and A. L. Robinson (2007), Sources of organic aerosol: Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models, Atmospheric Environment, 41(40), 9353-9369, doi:http://dx.doi.org/10.1016/j.atmosenv.2007.09.016.
Simoneit, B. R. T., W. F. Rogge, M. A. Mazurek, L. J. Standley, L. M. Hildemann, and G. R. Cass (1993), LIGNIN PYROLYSIS PRODUCTS, LIGNANS, AND RESIN ACIDS AS SPECIFIC TRACERS OF PLANT CLASSES IN EMISSIONS FROM BIOMASS COMBUSTION, Environmental Science & Technology, 27(12), 2533-2541, doi:10.1021/es00048a034.
Song, Y., X. Tang, S. Xie, Y. Zhang, Y. Wei, M. Zhang, L. Zeng, and S. Lu (2007), Source apportionment of PM2.5 in Beijing in 2004, Journal of Hazardous Materials, 146(1–2), 124-130, doi:http://dx.doi.org/10.1016/j.jhazmat.2006.11.058
Souza, S. R., P. C. Vasconcellos, and L. R. F. Carvalho (1999), Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil, Atmospheric Environment, 33(16), 2563-2574, doi:http://dx.doi.org/10.1016/S1352-2310(98)00383-5.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan (2015), NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96(12), 2059-2077, doi:10.1175/BAMS-D-14-00110.1.
Stockwell, C. E., P. R. Veres, J. Williams, and R. J. Yokelson (2015), Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmospheric Chemistry and Physics, 15(2), 845-865, doi:10.5194/acp-15-845-2015.
Sulzer, P., A. Edtbauer, E. Hartungen, S. Jurschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Mark, and T. D. Mark (2012), From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis, International Journal of Mass Spectrometry, 321–322, 66-70, doi:http://dx.doi.org/10.1016/j.ijms.2012.05.003
Suni, T., et al. (2008), Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest, Atmospheric Chemistry and Physics, 8(1), 129-139.
Surratt, J. D., et al. (2008), Organosulfate Formation in Biogenic Secondary Organic Aerosol, The Journal of Physical Chemistry A, 112(36), 8345-8378, doi:10.1021/jp802310p.
Surratt, J. D., et al. (2006), Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, The Journal of Physical Chemistry A, 110(31), 9665-9690, doi:10.1021/jp061734m.
Tanner, R. L., W. J. Parkhurst, M. L. Valente, and W. David Phillips (2004), Regional composition of PM2.5 aerosols measured at urban, rural and “background” sites in the Tennessee valley, Atmospheric Environment, 38(20), 3143-3153, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.03.023.
Thalman, R., et al. (2015), Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions, Atmos. Meas. Tech., 8(4), 1835-1862, doi:10.5194/amt-8-1835-2015.
Thornberry, T., D. M. Murphy, D. S. Thomson, J. de Gouw, C. Warneke, T. S. Bates, P. K. Quinn, and D. Coffman (2009), Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument, Aerosol Science and Technology, 43(5), 486-501, doi:10.1080/02786820902763132.
Tillmann, R., M. Hallquist, A. M. Jonsson, A. Kiendler-Scharr, H. Saathoff, Y. Iinuma, and T. F. Mentel (2010), Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of alpha-pinene, Atmospheric Chemistry and Physics, 10(15), 7057-7072, doi:10.5194/acp-10-7057-2010.
Timkovsky, J., U. Dusek, J. S. Henzing, T. L. Kuipers, T. Rockmann, and R. Holzinger (2015), Offline thermal-desorption proton-transfer-reaction mass spectrometry to study composition of organic aerosol, Journal of Aerosol Science, 79, 1-14, doi:10.1016/j.jaerosci.2014.08.010.
Timkovsky, J., P. Gankema, R. Pierik, and R. Holzinger (2014), A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions, Environmental Science: Processes & Impacts, 16(10), 2301-2312, doi:10.1039/C4EM00214H.
Turnbull, J. C., P. P. Tans, S. J. Lehman, D. Baker, T. J. Conway, Y. S. Chung, J. Gregg, J. B. Miller, J. R. Southon, and L.-X. Zhou (2011), Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia, Journal of Geophysical Research: Atmospheres, 116(D24), n/a-n/a, doi:10.1029/2011JD016691.
Turpin, B. J., and H.-J. Lim (2001), Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 35(1), 602-610, doi:10.1080/02786820119445.
Urban, R. C., M. Lima-Souza, L. Caetano-Silva, M. E. C. Queiroz, R. F. P. Nogueira, A. G. Allen, A. A. Cardoso, G. Held, and M. L. A. M. Campos (2012), Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols, Atmospheric Environment, 61, 562-569, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.07.082.
Van Dingenen, R., et al. (2004), A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmospheric Environment, 38(16), 2561-2577, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.01.040.
Vestenius, M., H. Hellen, J. Levula, P. Kuronen, K. J. Helminen, T. Nieminen, M. Kulmala, and H. Hakola (2014), Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest, Atmospheric Chemistry and Physics, 14(15), 7883-7893, doi:10.5194/acp-14-7883-2014.
Vogel, A. L., M. Aijala, M. Bruggemann, M. Ehn, H. Junninen, T. Petaja, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann (2013), Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study, Atmos. Meas. Tech., 6(2), 431-443, doi:10.5194/amt-6-431-2013.
Wagener, S., M. Langner, U. Hansen, H. J. Moriske, and W. R. Endlicher (2012), Spatial and seasonal variations of biogenic tracer compounds in ambient PM10 and PM1 samples in Berlin, Germany, Atmospheric Environment, 47, 33-42, doi:10.1016/j.atmosenv.2011.11.044.
Wang, Y., G. Zhuang, S. Chen, Z. An, and A. Zheng (2007), Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China, Atmospheric Research, 84(2), 169-181, doi:http://dx.doi.org/10.1016/j.atmosres.2006.07.001.
Williams, B. J., A. H. Goldstein, N. M. Kreisberg, and S. V. Hering (2006), An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG), Aerosol Science and Technology, 40(8), 627-638, doi:10.1080/02786820600754631.
Williams, B. J., Y. Zhang, X. Zuo, R. E. Martinez, M. J. Walker, N. M. Kreisberg, A. H. Goldstein, K. S. Docherty, and J. L. Jimenez (2016), Organic and inorganic decomposition products from the thermal desorption of atmospheric particles, Atmos. Meas. Tech., 9(4), 1569-1586, doi:10.5194/amt-9-1569-2016.
Winiger, P., A. Andersson, K. E. Yttri, P. Tunved, and O. Gustafsson (2015), Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard, Environmental Science & Technology, 49(19), 11959-11966, doi:10.1021/acs.est.5b02644.
Wisthaler, A., N. R. Jensen, R. Winterhalter, W. Lindinger, and J. Hjorth (2001), Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS), Atmospheric Environment, 35(35), 6181-6191, doi:10.1016/s1352-2310(01)00385-5.
Yasmeen, F., R. Vermeylen, N. Maurin, E. Perraudin, J. F. Doussin, and M. Claeys (2012), Characterisation of tracers for aging of alpha-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry, Environ. Chem., 9(3), 236-246, doi:10.1071/en11148.
Yee, L. D., et al. (2013), Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13(16), 8019-8043, doi:10.5194/acp-13-8019-2013.
Yu, J. Z., R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, and P. Blanchard (1999), Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres, Geophysical Research Letters, 26(8), 1145-1148, doi:10.1029/1999gl900169.
Yu, S. (2000), Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review, Atmospheric Research, 53(4), 185-217, doi:http://dx.doi.org/10.1016/S0169-8095(00)00037-5.
Zangrando, R., E. Barbaro, P. Zennaro, S. Rossi, N. M. Kehrwald, J. Gabrieli, C. Barbante, and A. Gambaro (2013), Molecular Markers of Biomass Burning in Arctic Aerosols, Environmental Science & Technology, 47(15), 8565-8574, doi:10.1021/es400125r.
Zhang, K. M., and A. S. Wexler (2002), A hypothesis for growth of fresh atmospheric nuclei, Journal of Geophysical Research: Atmospheres, 107(D21), 4577, doi:10.1029/2002JD002180.
Zhang, Q., et al. (2007), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34(13), 6, doi:10.1029/2007gl029979.
Zhang, R. Y., L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. L. McGraw, and L. T. Molina (2009), Formation of nanoparticles of blue haze enhanced by anthropogenic pollution, Proceedings of the National Academy of Sciences of the United States of America, 106(42), 17650-17654, doi:10.1073/pnas.0910125106.
Zhang, S. H., G. P. Yang, H. H. Zhang, and J. Yang (2014), Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol, Science of the Total Environment, 488, 157-167, doi:10.1016/j.scitotenv2014.04.074.
Zhao, Y., et al. (2013), Insights into Secondary Organic Aerosol Formation Mechanisms from Measured Gas/Particle Partitioning of Specific Organic Tracer Compounds, Environmental Science & Technology, 47(8), 3781-3787, doi:10.1021/es304587x.
Zheng, M., L. Ke, E. S. Edgerton, J. J. Schauer, M. Dong, and A. G. Russell (2006), Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data, Journal of Geophysical Research: Atmospheres, 111(D10), n/a-n/a, doi:10.1029/2005JD006777.
Zhou, J. C., E. Swietlicki, H. C. Hansson, and P. Artaxo (2002), Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season, Journal of Geophysical Research-Atmospheres, 107(D20), 10, doi:10.1029/2000jd000203.
Ziemann, P. J., and R. Atkinson (2012), Kinetics, products, and mechanisms of secondary organic aerosol formation, Chemical Society Reviews, 41(19), 6582-6605, doi:10.1039/C2CS35122F.
指導教授 周崇光、劉振榮(Charles C.-K Chou Gin-Rong Liu) 審核日期 2017-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明