博碩士論文 101621603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:34.207.78.157
姓名 裘德(Cornelius Csar Jude H. Salinas)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 CO2於中氣層與低熱氣層中的波平均流傳遞
(Wave-Mean Flow Transport of CO2 in the Mesosphere and Lower Thermosphere Region)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-1-31以後開放)
摘要(中) CO2在中氣層與低熱氣層(MLT)中是了解此區域複雜動力機制的理想追蹤物件。此論述使用了搭載於TIMED衛星 (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite)上SABER儀器 (Sounding of the Atmosphere using Broad Emission Radiometry instrument)的CO2觀測,作為2002至2015年追蹤大氣重力波導致的渦流擴散與大氣潮汐導致的平均運輸之物件。大氣重力波導致的渦流擴散與大氣潮汐導致的平均運輸在中氣層與低熱氣層(MLT)中扮演極重要的角色,但卻鮮少被觀測。
做為一個追蹤大氣重力波所致渦流擴散的追蹤物件,此研究計算了第一筆時間尺度長於一個太陽週期的衛星觀測全球平均渦流擴散係數。比較這些渦流擴散係數與自WACCM模型(Whole Atmosphere Community Climate Model)版與TIME-GCM (Thermosphere - Ionosphere - Mesosphere Electrodynamics - General Circulation Model)版本的參數化大氣重力波計算之係數,顯示出我們的係數可能與大氣重力波破碎所致的擴散有關,這提供了對於大氣重力波參數化史無前例的觀測支援。這項技術之後被使用於證明大氣動力波並沒有劇烈地影響熱氣層中性與電離層電子密度的季節變化。有著數據長於十年的優勢,我們可以看出在高度動態驅動的冬夏至日季節,破碎大氣重力波所致的渦流擴散與太陽週期呈現負相關。
做為一個追蹤大氣潮汐導致的平均運輸的追蹤物件,此研究證明了在春秋分時的熱帶,CO2有一個顯著的當地時間變化,接著它顯示WACCM模擬的類似當地時間變化。這讓WACCM資料輸出的使用顯示,這些熱帶CO2中的當地時間變化主要是由垂直與子午線方向的平流所驅使。這也讓我們看出了SABER溫度剖面分析所使用的一個反演方法,其假設CO2中所有顯著的當地時間變化都與用SABER CO2剖面反演出的SABER溫度剖面沒有清楚的差異。
這些大氣重力波參數化與潮汐餘流傳輸計算都是基於物理,此論述顯著地推進了我們對這些MLT區域中複雜波平均流動力背後物理機制的了解。此論述更高度推薦MLT區域的CO2觀測工作,因為這項研究彰顯了對於如大氣重力波與潮汐此類非常複雜動力機制,CO2能扮演相當良好的追蹤物件。
摘要(英) CO2 in the Mesosphere and Lower Thermosphere (MLT) is an ideal tracer for the numerous complicated dynamical motions in the region. This dissertation uses CO2 observations from the Sounding of the Atmosphere using Broad Emission Radiometry instrument (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite (TIMED) from 2002 to 2015 as a tracer for eddy diffusion due to gravity waves and advective transport due to tides. Eddy diffusion due to gravity waves and advective transport due to tides are poorly observed but very important in the MLT region.

As a tracer for diffusive transport due to gravity waves, this work calculates the first satellite-based global-mean eddy diffusion coefficients that span more than a solar cycle. Comparing these eddy diffusion coefficients with coefficients calculated from gravity wave parameterizations in versions of the Whole Atmosphere Community Climate Model (WACCM) and in the Thermosphere - Ionosphere - Mesosphere Electrodynamics - General Circulation Model (TIME-GCM) suggest that our coefficients may correspond to diffusion due to breaking gravity waves. This provides first-ever observational support into these gravity wave parameterizations. These were then used to show that gravity waves do not significantly drive the seasonal variations in thermospheric neutral and ionospheric electron density. Taking advantage of the more than a decade long coverage of the data, it was also shown that eddy diffusion due to breaking gravity waves have a negative correlation to the solar cycle during the highly dynamically driven solstice season.

As a tracer for advective transport due to tides, this work proves that there is a significant local-time variation in CO2 over the tropics during equinox. It was then shown that WACCM simulates a similar local-time variation in CO2. This allowed the use of WACCM outputs to show that these local-time variations in tropical CO2 were driven primarily by vertical and meridional advection. It was then shown that SABER temperature profiles derived using a retrieval algorithm that assumes no significant local-time variation in CO2 has clear differences from SABER temperature profiles simultaneously retrieved with SABER CO2 profiles.

As these gravity wave parameterizations and tide-induced transport calculations are Physics-based, this dissertation significantly advances our understanding of the physical mechanisms behind these complicated wave-mean flow dynamics in the MLT region. This dissertation highly recommends more CO2 observations in the MLT region because this work demonstrates how great a tracer it is for very complicated dynamical motions like gravity waves and tides.
關鍵字(中) ★ 中氣層與低熱氣層
★ 大氣科學
★ 高層大氣物理學
關鍵字(英)
論文目次 Chinese Abstract i
Abstract ii
Acknowledgements iv
Contents vi
List of Figures vii
List of Tables xiii
1 Introduction 1
1.1 Mesosphere and Lower Thermosphere Region . . . . . . . . . . . . . . . . . . 1
1.2 CO2 in the Mesosphere and Lower Thermosphere Region . . . . . . . . . . . 4
1.3 Issues on Advection and Di usion Processes in the MLT region . . . . . . . . 6
1.4 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Physical Theories and Mathematical Formulations of Tracer Transport in
the MLT Region 12
2.1 3D Transport of a Tracer in the MLT Region . . . . . . . . . . . . . . . . . . 13
2.1.1 Di usive Transport due to Gravity Waves . . . . . . . . . . . . . . . 16
2.1.2 Advective and Di usive Transport due to Tides . . . . . . . . . . . . 23
2.2 Transformed-Eulerian Mean Transport of a Tracer in the MLT Region . . . . 29
3 SABER CO2 and Numerical Models 32
3.1 SABER CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Numerical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 One-dimensional Model (1D Model) . . . . . . . . . . . . . . . . . . . 33
3.2.2 Speci ed Dynamics - Whole Atmosphere Community Climate Model
(SD-WACCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Whole Atmosphere Community Climate Model - eXtended (WACCM-X) 37
3.2.4 Thermosphere Ionosphere Electrodynamics - General Circulation Model
(TIE-GCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Thermosphere Ionosphere Mesosphere Electrodynamics - General Circulation
Model (TIME-GCM) . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Seasonality of SABER CO2-derived Eddy Di usion Coecients in the MLT
Region and its Impacts on the I/T System 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 SABER CO2-derived Global-mean Eddy Di usion Coecients . . . . . . . . 44
4.3 Seasonality of SABER Kzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 SABER Kzz-constrained TIE-GCM Modeling of AO and SAO in the I/T region 55
4.4.1 CO2-constrained AO and SAO in the Thermosphere . . . . . . . . . . 56
4.4.2 CO2-constrained AO and SAO in the Ionosphere . . . . . . . . . . . 59
4.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Solar Cycle Response of SABER Kzz during Austral Winter 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Chemical Tendency Analysis . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Multiple Linear Regression and Correlation Analysis . . . . . . . . . 70
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Solar Cycle Response of Global-mean Lower Thermospheric CO2 and
Kzz in June . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Comparison of zonal-mean SABER CO2 and SD-WACCM CO2 . . . 74
5.3.3 Solar Cycle Response of CO2 over the Austral Winter MLT Region . 76
5.3.4 Solar Cycle Response of Austral Winter MLT Dynamics . . . . . . . 83
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 Local-time Variations of SABER CO2 over the Tropical Mesosphere and
Lower Thermosphere during Equinox 94
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Local-time variation of CO2 in the MLT region . . . . . . . . . . . . . . . . 99
6.4 Local-time variation of Temperature in the MLT region . . . . . . . . . . . . 102
6.5 Tidal Analysis on Vertical Wind in the MLT region . . . . . . . . . . . . . . 106
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7 Summary and Conclusions 115
Mathematical Constants and Expressions 118
References 120
參考文獻 Akmaev, R. A., & Shved, G. M. (1980). Modelling of the composition of the lower thermosphere taking account of the dynamics with applications to tidal variations of the [OI] 5577 Å airglow. Journal of Atmospheric and Terrestrial Physics, 42(8), 705-716.
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., ... & Kawatani, Y. (2010). Recent developments in gravity‐wave effects in climate models and the global distribution of gravity‐wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 136(650), 1103-1124.
Alexander, S. P., Klekociuk, A. R., & Murphy, D. J. (2011). Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E). Journal of Geophysical Research: Atmospheres, 116(D13).
Allen, M., Yung, Y. L., & Waters, J. W. (1981). Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km). Journal of Geophysical Research: Space Physics, 86(A5), 3617-3627.
Andrews, D. G., Holton, J. R., & Leovy, C. B. (1987). Middle atmosphere dynamics (No. 40). Academic press.
Angelats i Coll, M., & Forbes, J. M. (1998). Dynamical influences on atomic oxygen and 5577 Å emission rates in the lower thermosphere. Geophysical research letters, 25(4), 461-464.
Baldwin, M. P., & Dunkerton, T. J. (2005). The solar cycle and stratosphere–troposphere dynamical coupling. Journal of atmospheric and solar-terrestrial physics, 67(1), 71-82.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., ... & Jones, D. B. A. (2001). The quasi‐biennial oscillation. Reviews of Geophysics, 39(2), 179-229.
Banks, P. M., & Kockarts, G. (1973). Aeronomy, part B, 355 pp. Academic, San Diego, Calif.
Beagley, S. R., Boone, C. D., Fomichev, V. I., Jin, J. J., Semeniuk, K., McConnell, J. C., & Bernath, P. F. (2010). First multi-year occultation observations of CO 2 in the MLT by ACE satellite: Observations and analysis using the extended CMAM. Atmospheric Chemistry and Physics, 10(3), 1133-1153.
Becker, E. (2012). Dynamical control of the middle atmosphere. Space science reviews, 168(1-4), 283-314.
Beig, G. (2006). Trends in the mesopause region temperature and our present understanding—an update. Physics and Chemistry of the Earth, Parts A/B/C, 31(1), 3-9.
Beig, G., heer, J., Mlynczak, M. G., & Keckhut, P. (2008). Overview of the temperature response in the mesosphere and lower thermosphere to solar activity. Reviews of Geophysics, 46(3).
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy‐Peyret, C., ... & DeCola, P. (2005). Atmospheric chemistry experiment (ACE): mission overview. Geophysical Research Letters, 32(15).
Bevilacqua, R. M., Strobel, D. F., Summers, M. E., Olivero, J. J., & Allen, M. (1990). The seasonal variation of water vapor and ozone in the upper mesosphere: Implications for vertical transport and ozone photochemistry. Journal of Geophysical Research: Atmospheres, 95(D1), 883-893.
Burns, A. G., Killeen, T. L., & Roble, R. G. (1989). Processes responsible for the compositional structure of the thermosphere. Journal of Geophysical Research: Space Physics, 94(A4), 3670-3686.
Burrage, M. D., Arvin, N., Skinner, W. R., & Hays, P. B. (1994). Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager. Journal of Geophysical Research: Space Physics, 99(A8), 15017-15023.
Chabrillat, S., Kockarts, G., Fonteyn, D., & Brasseur, G. (2002). Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere. Geophysical research letters, 29(15), 19-1.
Chandran, A., Collins, R. L., & Harvey, V. L. (2014). Stratosphere-mesosphere coupling during stratospheric sudden warming events. Advances in Space Research, 53(9), 1265-1289.
Chang, L. C., Yue, J., Wang, W., Wu, Q., & Meier, R. R. (2014). Quasi two day wave‐related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere. Journal of Geophysical Research: Space Physics, 119(6), 4786-4804.
Chang, L., Palo, S., Hagan, M., Richter, J., Garcia, R., Riggin, D., & Fritts, D. (2008). Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM). Advances in Space Research, 41(9), 1398-1407.
Chapman, S., & Lindzen, R. S. (1970). Atmospheric tides, 200 pp. D. Reidel, Norwell, Mass.
Chiodo, G., Calvo, N., Marsh, D. R., & Garcia‐Herrera, R. (2012). The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 117(D6).
Cicerone, R. J. (1990), Greenhouse cooling up high, Nature, 344, 104–105, doi:10.1038/344104a0.
Cullens, C. Y., England, S. L., & Garcia, R. R. (2015). The 11 year solar cycle signature on wave‐driven dynamics in WACCM. Journal of Geophysical Research: Space Physics, 121(4), 3484-3496.
Dunkerton, T. J. (1982), Theory of the mesopause semiannual oscillation, J. Atmos. Sci., 39, 2681–2690.
Emmert, J. T. (2015). Thermospheric mass density: A review. Advances in Space Research, 56(5), 773-824.
Emmert, J. T., Stevens, M. H., Bernath, P. F., Drob, D. P., & Boone, C. D. (2012). Observations of increasing carbon dioxide concentration in Earth/′s thermosphere. Nature Geoscience, 5(12), 868-871.
Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N. A., Tourpali, K., Weber, M., ... & Rozanov, E. (2013). Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmospheric Chemistry and Physics, 13(8), 3945-3977.
Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G., Russell, J. M., & Riese, M. (2011). Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. Journal of Geophysical Research: Atmospheres, 116(D19).
Field, P. R., Rishbeth, H., Moffett, R. J., Wenden, D. W., Fuller-Rowell, T. J., Millward, G. H., & Aylward, A. D. (1998). Modelling composition changes in F-layer storms. Journal of Atmospheric and Solar-Terrestrial Physics, 60(5), 523-543.
Forbes, J. M. (1982). Atmospheric tides: 1. Model description and results for the solar diurnal component. Journal of Geophysical Research: Space Physics, 87(A7), 5222-5240.
Forbes, J. M. (1995). Tidal and planetary waves. The upper mesosphere and lower thermosphere: a review of experiment and theory, 87, 67-87.
Forbes, J. M., & Vincent, R. A. (1989). Effects of mean winds and dissipation on the diurnal propagating tide: An analytic approach. Planetary and space science, 37(2), 197-209.
Forbes, J. M., & Wu, D. (2006). Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. Journal of the atmospheric sciences, 63(7), 1776-1797.
Forbes, J. M., & Wu, D. (2006). Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. Journal of the atmospheric sciences, 63(7), 1776-1797.
Forbes, J. M., Zhang, X., Palo, S. E., Russell, J., Mertens, C. J., & Mlynczak, M. (2009). Kelvin waves in stratosphere, mesosphere and lower thermosphere temperatures as observed by TIMED/SABER during 2002–2006. Earth, planets and space, 61(4), 447-453.
Fritts, D. C. (1984). Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer. Journal of the atmospheric sciences, 41(4), 524-537.
Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of geophysics, 41(1).
Fritts, D. C., Smith, R. B., Taylor, M. J., Doyle, J. D., Eckermann, S. D., Dörnbrack, A., ... & Criddle, N. R. (2016). The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bulletin of the American Meteorological Society, 97(3), 425-453.
Fukao, S., M. D. Yamanaka, N. Ao, W. K. Hocking, T. Sato, M. Yamamoto, T. Nakamura, T. Tsuda, and S. Kato (1994), Seasonal variability of vertical eddy diffusivity in the middle atmosphere: 1. Three-year observations by the middle and upper atmosphere radar, J. Geophys. Res., 99, 18,973–18,987.
Gan, Q., Du, J., Fomichev, V. I., Ward, W. E., Beagley, S. R., Zhang, S., & Yue, J. (2017). Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979–2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002–2015) TIMED/SABER observations. Journal of Geophysical Research: Space Physics, 122(4), 4801-4818.
Garcia, R. R., & Solomon, S. (1985). The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres, 90(D2), 3850-3868.
Garcia, R. R., Lieberman, R., Russell III, J. M., & Mlynczak, M. G. (2005). Large-scale waves in the mesosphere and lower thermosphere observed by SABER. Journal of the atmospheric sciences, 62(12), 4384-4399.
Garcia, R. R., López‐Puertas, M., Funke, B., Kinnison, D. E., Marsh, D. R., & Qian, L. (2016). On the secular trend of COx and CO2 in the lower thermosphere. Journal of Geophysical Research: Atmospheres, 121(7), 3634-3644.
Garcia, R. R., López‐Puertas, M., Funke, B., Marsh, D. R., Kinnison, D. E., Smith, A. K., & González‐Galindo, F. (2014). On the distribution of CO2 and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres, 119(9), 5700-5718.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., & Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research: Atmospheres, 112(D9).
Gardner, C. S. (2018). Role of Wave‐induced Diffusion and Energy Flux in the Vertical Transport of Atmospheric Constituents in the Mesopause Region. Journal of Geophysical Research: Atmospheres.
Gardner, C. S., & Liu, A. Z. (2010). Wave‐induced transport of atmospheric constituents and its effect on the mesospheric Na layer. Journal of Geophysical Research: Atmospheres, 115(D20).
Gardner, C. S., & Liu, A. Z. (2016). Chemical transport of neutral atmospheric constituents by waves and turbulence: Theory and observations. Journal of Geophysical Research: Atmospheres, 121(1), 494-520.
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., ... & Zhou, T. (2013). A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17), 6383-6405.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., ... & Luterbacher, J. (2010). Solar influences on climate. Reviews of Geophysics, 48(4).
Gray, L. J., Rumbold, S. T., & Shine, K. P. (2009). Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. Journal of the Atmospheric Sciences, 66(8), 2402-2417.
Groves, G. V. (1972), Annual and semi-annual zonal wind components and corresponding temperature and density variations, 60–130 km, Planet. Space Sci., 20, 2099–2112.
Grygalashvyly, M., Becker, E., & Sonnemann, G. R. (2012). Gravity wave mixing and effective diffusivity for minor chemical constituents in the mesosphere/lower thermosphere. Space science reviews, 168(1-4), 333-362.
Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios, S., Tourpali, K., & Schmutz, W. (2017). A new observational solar irradiance composite. Journal of Geophysical Research: Space Physics, 122(6), 5910-5930.
Hagan, M. E., and J. M. Forbes (2002), Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), 4754, doi:10.1029/2001JD001236.
Hagan, M. E., and J. M. Forbes (2003), Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108(A2), 1062, doi:10.1029/2002JA009466
Hagan, M. E., Maute, A., Roble, R. G., Richmond, A. D., Immel, T. J., & England, S. L. (2007). Connections between deep tropical clouds and the Earth′s ionosphere. Geophysical Research Letters, 34(20).
Hampson, J., Keckhut, P., Hauchecorne, A., & Chanin, M. L. (2005). The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere: Part II numerical simulations and the role of planetary waves. Journal of atmospheric and solar-terrestrial physics, 67(11), 948-958.
Hampson, J., Keckhut, P., Hauchecorne, A., & Chanin, M. L. (2006). The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere—part III: Investigations of zonal asymmetry. Journal of atmospheric and solar-terrestrial physics, 68(14), 1591-1599.
Hays, P. B., Wu, D. L., & HRDI Science Team, T. (1994). Observations of the diurnal tide from space. Journal of the atmospheric Sciences, 51(20), 3077-3093.
Hedin, A. E. (1983), A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83, J. Geophys. Res.,88, 10,170–10,188.
Hedin, A. E. (1987), MSIS-86 thermosphere model, J. Geophys. Res., 92,4649–4662.
Hedin, A. E. (1991),Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172.
Hedin, A. E., et al. (1977a),A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1, N2 density and temperature, J. Geophys. Res., 82, 2139–2147.
Hedin, A. E., C. A. Reber, G. P. Newton, N. W. Spenser,H. C. Brinton, H. G. Mayr, and W. E. Potter (1977b), A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2, composition, J. Geophys. Res., 82,2148–2156.
Heelis, R. A., J. K. Lowell, and R. W. Spiro (1982), A model of the high-latitude ionospheric convection pattern, J. Geophys. Res.,87, 6339–6345.
Hines, C. O. (1997a). Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4), 371-386.
Hines, C. O. (1997b). Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4), 387-400.
Hirota, I. (1980), Observational evidence of the semiannual oscillation in the tropical middle atmosphere–A review, Pure Appl. Geophys., 118, 217–238.
Hitchman, M. H., and C. B. Leovy (1986), Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978–May 1979, J. Atmos. Sci., 43, 3159–3176.
Hoffmann, L., Xue, X., & Alexander, M. J. (2013). A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. Journal of Geophysical Research: Atmospheres, 118(2), 416-434.
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., ... & Paxton, L. J. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33(15).
Jacchia, L. G. (1965), Static diffusion models of the upper atmosphere with empirical temperature profiles, Smithson. Contrib. Astrophys., 8, 215–257.
Jacchia, L. G. (1971),Semiannual variation in the heteorosphere: A reappraisal, J. Geophys. Res., 76, 4602–4607.
Jacobi, C. (2014). Long-term trends and decadal variability of upper mesosphere/lower thermosphere gravity waves at midlatitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 118, 90-95.
John, S. R., & Kumar, K. K. (2012). TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate dynamics, 39(6), 1489-1505.
John, S. R., & Kumar, K. K. (2016). Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere. Climate dynamics, 47(12), 3863-3881.
Jones, M., Emmert, J. T., Drob, D. P., & Siskind, D. E. (2017). Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere. Geophysical Research Letters, 44(1), 12-21.
Jones, M., Emmert, J. T., Drob, D. P., Picone, J. M., & Meier, R. R. (2018). Origins of the Thermosphere‐Ionosphere Semiannual Oscillation: Reformulating the “Thermospheric Spoon” Mechanism. Journal of Geophysical Research: Space Physics, 123(1), 931-954.
Jones, M., Forbes, J. M., & Hagan, M. E. (2014b). Tidal‐induced net transport effects on the oxygen distribution in the thermosphere. Geophysical Research Letters, 41(14), 5272-5279.
Jones, M., Forbes, J. M., & Hagan, M. E. (2016). Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides. Journal of Geophysical Research: Space Physics, 121(6), 5837-5855.
Jones, M., Forbes, J. M., Hagan, M. E., & Maute, A. (2014a). Impacts of vertically propagating tides on the mean state of the ionosphere‐thermosphere system. Journal of Geophysical Research: Space Physics, 119(3), 2197-2213.
Keckhut, P., Cagnazzo, C., Chanin, M. L., Claud, C., & Hauchecorne, A. (2005). The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: Part I—Assessment of observations. Journal of atmospheric and solar-terrestrial physics, 67(11), 940-947.
Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, P. R. Guenther, L. S. Waterman, and J. F. S. Chin (1976), Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538–551.
Khattatov, B. V., M. A. Geller, and V. A. Yubin (1997), Diurnal migrating tides as seen by the high-resolution Doppler imager/UARS: 2. Monthly mean global zonal and vertical velocities, pressure, temperature, and inferred dissipation, J. Geophys. Res., 102, 4423–4435.
Kirchhoff, V. W. J. H., and B. R. Clemesha (1983), Eddy diffusion coefficients in the lower thermosphere, J. Geophys. Res., 88, 5765–5768.
Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research: Atmospheres, 107(D24).
Kodera, K., Matthes, K., Shibata, K., Langematz, U., & Kuroda, Y. (2003). Solar impact on the lower mesospheric subtropical jet: A comparative study with general circulation model simulations. Geophysical Research Letters, 30(6).
Kunz, A., Pan, L. L., Konopka, P., Kinnison, D. E., & Tilmes, S. (2011). Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. Journal of Geophysical Research: Atmospheres, 116(D24).
Labitzke, K. (2003). The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?. Meteorologische Zeitschrift, 12(4), 209-216.
Lal, C. (1992). Global F2 layer ionization and geomagnetic activity. Journal of Geophysical Research: Space Physics, 97(A8), 12153-12159.
Lal, C. (1998). Solar wind and equinoctial maxima in geophysical phenomena. Journal of atmospheric and solar-terrestrial physics, 60(10), 1017-1024.
Langematz, U., Grenfell, J. L., Matthes, K., Mieth, P., Kunze, M., Steil, B., & Brühl, C. (2005). Chemical effects in 11‐year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB‐CMAM‐CHEM). Geophysical research letters, 32(13).
Laštovička, J. (2009), Global pattern of trends in the upper atmosphere and ionosphere: Recent progress, J. Atmos. Sol. Terr. Phys., 71, 1514–1528, doi:10.1016/j.jastp.2009.01.010.
Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., & Puga, L. C. (1997). Detection and parameterization of variations in solar mid‐and near‐ultraviolet radiation (200–400 nm). Journal of Geophysical Research: Atmospheres, 102(D25), 29939-29956.
Lee, J. N., Wu, D. L., Ruzmaikin, A., & Fontenla, J. (2018). Solar cycle variations in mesospheric carbon monoxide. Journal of Atmospheric and Solar-Terrestrial Physics.
Li, T., T. Leblanc, I. S. McDermid, P. Keckhut, A. Hauchecorne, and X. K. Dou (2011), Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations, J. Geophys. Res., 116, D00P05, doi:10.1029/2010JD015275.
Liang, M. C., Blake, G. A., Lewis, B. R., & Yung, Y. L. (2007). Oxygen isotopic composition of carbon dioxide in the middle atmosphere. Proceedings of the National Academy of Sciences, 104(1), 21-25.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., & Smith, A. K. (2016). On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. Journal of Geophysical Research: Atmospheres, 121(9), 4518-4537.
Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research: Oceans, 86(C10), 9707-9714.
Liu AZ (2009) Estimate eddy diffusion coefficients from gravity wave vertical momentum and heat fluxes. Geophys Res Lett 36:L08806
Liu, A. Z., & Gardner, C. S. (2004). Vertical dynamical transport of mesospheric constituents by dissipating gravity waves. Journal of atmospheric and solar-terrestrial physics, 66(3-4), 267-275.
Liu, H. L. (2014). WACCM-X simulation of tidal and planetary wave variability in the upper atmosphere. Modeling the Ionosphere-Thermosphere System, 181-199.
Liu, H. L., & Roble, R. G. (2002). A study of a self‐generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME‐GCM/CCM3. Journal of Geophysical Research: Atmospheres, 107(D23), ACL-15.
Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., ... & Qian, L. (2018). Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM‐X 2.0). Journal of Advances in Modeling Earth Systems, 10(2), 381-402.
Liu, H. L., Hagan, M. E., & Roble, R. G. (2000). Local mean state changes due to gravity wave breaking modulated by the diurnal tide. Journal of Geophysical Research: Atmospheres, 105(D10), 12381-12396.
Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M., & Yee, J. H. (2004). The 6.5‐day wave and its seasonal variability in the middle and upper atmosphere. Journal of Geophysical Research: Atmospheres, 109(D21).
Liu, H. L., Yudin, V. A., & Roble, R. G. (2013). Day‐to‐day ionospheric variability due to lower atmosphere perturbations. Geophysical Research Letters, 40(4), 665-670.
Liu, H.-L. (2016), Variability and predictability of the space environment as related to lower atmosphere forcing, Space Weather, 14, 634–658
Liu, J., Liu, H., Wang, W., Burns, A. G., Wu, Q., Gan, Q., ... & Pedatella, N. M. (2018). First Results From the Ionospheric Extension of WACCM‐X During the Deep Solar Minimum Year of 2008. Journal of Geophysical Research: Space Physics, 123(2), 1534-1553.
Liu, X., Yue, J., Xu, J., Garcia, R. R., Russell III, J. M., Mlynczak, M., ... & Nakamura, T. (2017). Variations of global gravity waves derived from 14 years of SABER temperature observations. Journal of Geophysical Research: Atmospheres, 122(12), 6231-6249.
LóPez‐Puertas, M., LóPez‐Valverde, M. Á., Garcia, R. R., & Roble, R. G. (2000). A review of CO2 and CO abundances in the middle atmosphere. Atmospheric science across the stratopause, 83-100.
Lu, H., Gray, L. J., White, I. P., & Bracegirdle, T. J. (2017a). Stratospheric Response to the 11-year Solar Cycle: Breaking Planetary Waves, Internal Reflection and Resonance. Journal of Climate, (2017).
Lu, H., Scaife, A. A., Marshall, G. J., Turner, J., & Gray, L. J. (2017b). Downward Wave Reflection as a Mechanism for the Stratosphere–Troposphere Response to the 11-Yr Solar Cycle. Journal of Climate, 30(7), 2395-2414.
Lu, X., Liu, H. L., Liu, A. Z., Yue, J., McInerney, J. M., & Li, Z. (2012). Momentum budget of the migrating diurnal tide in the Whole Atmosphere Community Climate Model at vernal equinox. Journal of Geophysical Research: Atmospheres, 117(D7).
Lübken, F. J. (1997), Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations, J. Geophys. Res., 102, 13,441–13,456.
Lübken, F. J. (2000). Nearly zero temperature trend in the polar summer mesosphere. Geophysical Research Letters, 27(21), 3603-3606.
Lübken, F. J. (2001). No long term change of the thermal structure in the mesosphere at high latitudes during summer. Advances in Space Research, 28(7), 947-953.
Lübken, F. J., Berger, U., & Baumgarten, G. (2013). Temperature trends in the midlatitude summer mesosphere. Journal of Geophysical Research: Atmospheres, 118(24).
Marsh, D. R. (2011). Chemical–dynamical coupling in the mesosphere and lower thermosphere. In Aeronomy of the Earth′s Atmosphere and Ionosphere (pp. 3-17). Springer, Dordrecht.
Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research: Atmospheres, 112(D23).
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., & Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1 (WACCM). Journal of Climate, 26(19), 7372-7391.
Marsh, D. R., Skinner, W. R., & Yudin, V. A. (1999). Tidal influences on O2 atmospheric band dayglow: HRDI observations vs. model simulations. Geophysical research letters, 26(10), 1369-1372.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., & Russell, J. M. (2006). SABER observations of the OH Meinel airglow variability near the mesopause. Journal of Geophysical Research: Space Physics, 111(A10).
Matthes, K., Kuroda, Y., Kodera, K., & Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. Journal of Geophysical Research: Atmospheres, 111(D6).
Matthes, K., Langematz, U., Gray, L. L., Kodera, K., & Labitzke, K. (2004). Improved 11‐year solar signal in the Freie Universität Berlin climate middle atmosphere model (FUB‐CMAM). Journal of Geophysical Research: Atmospheres, 109(D6).
Mayr, H. G., Mengel, J. G., Chan, K. L., & Huang, F. T. (2010). Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Zonal-mean variations. Journal of Atmospheric and Solar-Terrestrial Physics, 72(11), 807-828.
McCormack, J. P., & Hood, L. L. (1996). Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal dependences. Journal of Geophysical Research: Atmospheres, 101(D15), 20933-20944.
McLandress, C. (1997). Seasonal variability of the diurnal tide: Results from the Canadian middle atmosphere general circulation model. Journal of Geophysical Research: Atmospheres, 102(D25), 29747-29764.
McLandress, C., & Zhang, S. P. (2007). Satellite observations of mean winds and tides in the lower thermosphere: 1. Aliasing and sampling issues. Journal of Geophysical Research: Atmospheres, 112(D21).
McLandress, C., Rochon, Y., Shepherd, G. G., Solheim, B. H., Thuillier, G., & Vial, F. (1994). The meridional wind component of the thermospheric tide observed by WINDII on UARS. Geophysical research letters, 21(22), 2417-2420.
Mitchell, D. M., Misios, S., Gray, L. J., Tourpali, K., Matthes, K., Hood, L., ... & Shindell, D. (2015). Solar signals in CMIP‐5 simulations: the stratospheric pathway. Quarterly Journal of the Royal Meteorological Society, 141(691), 2390-2403.
Mlynczak, M. G., Hunt, L. A., Russell, J. M., Marshall, B. T., Mertens, C. J., & Thompson, R. E. (2016). The global infrared energy budget of the thermosphere from 1947 to 2016 and implications for solar variability. Geophysical Research Letters, 43(23).
Mlynczak, M. G., A contemporary assessment of the mesospheric energy budget, in Atmospheric ience Across the Stratopause, Geophys. Monogr. Ser., vol. 123, edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers,, pp. 37–52, AGU, Washington, D. C., 2000.
Moffett, R. J. (1979). The equatorial anomaly in the electron distribution of the terrestrial F-region. Fundamentals of Cosmic Physics, 4, 313-391.
Morton, Y. T., Lieberman, R. S., Hays, P. B., Ortland, D. A., Marshall, A. R., Wu, D., ... & Yee, J. H. (1993). Global mesospheric tidal winds observed by HRDI on board UARS. Geophys. Res. Lett, 20, 1262-1266.
Mukhtarov, P., Pancheva, D., & Andonov, B. (2009). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. Journal of Geophysical Research: Space Physics, 114(A2).
Nakamura, N. (2001). A new look at eddy diffusivity as a mixing diagnostic. Journal of the atmospheric sciences, 58(24), 3685-3701.
Nischal, N., Oberheide, J., Mlynczak, M. G., Hunt, L. A., & Maute, A. (2017). Nonmigrating tidal impact on the CO2 15 μm infrared cooling of the lower thermosphere during solar minimum conditions. Journal of Geophysical Research: Space Physics.
Oberheide, J., & Forbes, J. M. (2008). Thermospheric nitric oxide variability induced by nonmigrating tides. Geophysical Research Letters, 35(16).
Oberheide, J., & Forbes, J. M. (2008). Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophysical Research Letters, 35(4).
Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., & Bruinsma, S. L. (2009). Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. Journal of Geophysical Research: Atmospheres, 114(D1).
Oberheide, J., Hagan, M. E., & Roble, R. G. (2003). Tidal signatures and aliasing in temperature data from slowly precessing satellites. Journal of Geophysical Research: Space Physics, 108(A2).
Oberheide, J., Mlynczak, M. G., Mosso, C. N., Schroeder, B. M., Funke, B., & Maute, A. (2013). Impact of tropospheric tides on the nitric oxide 5.3 μm infrared cooling of the low‐latitude thermosphere during solar minimum conditions. Journal of Geophysical Research: Space Physics, 118(11), 7283-7293.
Paetzold, H. K., and H. Zschörner (1961), An annual and a semiannual variation of the upper air density, Pure Appl. Geophys., 48, 85–92.
Pancheva, D., Mukhtarov, P., & Andonov, B. (2009). Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002-2007). In Annales geophysicae: atmospheres, hydrospheres and space sciences (Vol. 27, No. 2, p. 687).
Panka, P. A., Kutepov, A. A., Kalogerakis, K. S., Janches, D., Russell, J. M., Rezac, L., ... & Yiğit, E. (2017). Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO 2 (ν 3) and OH (ν) emission models. Atmospheric Chemistry and Physics, 17(16), 9751-9760.
Peck, E. D., Randall, C. E., Harvey, V. L., & Marsh, D. R. (2015). Simulated solar cycle effects on the middle atmosphere: WACCM3 versus WACCM4. Journal of Advances in Modeling Earth Systems, 7(2), 806-822.
Pedatella, N. M., & Forbes, J. M. (2009). Modulation of the equatorial F‐region by the quasi‐16‐day planetary wave. Geophysical Research Letters, 36(9).
Pedatella, N. M., & Liu, H. L. (2018). The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm. Geophysical Research Letters, 45(10), 4578-4585.
Pedatella, N. M., Liu, H. L., Marsh, D. R., Raeder, K., Anderson, J. L., Chau, J. L., ... & Siddiqui, T. A. (2018). Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+ DART. Journal of Geophysical Research: Space Physics, 123(4), 3131-3153.
Picone, J. M., A. E. Hedin,D. P. Drob, and A. C. Aikin(2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.,107(A12), 1468, doi:10.1029/2002JA009430
Pilinski, M. D., & Crowley, G. (2015). Seasonal variability in global eddy diffusion and the effect on neutral density. Journal of Geophysical Research: Space Physics, 120(4), 3097-3117.
Preusse, P., Dörnbrack, A., Eckermann, S. D., Riese, M., Schaeler, B., Bacmeister, J. T., ... & Grossmann, K. U. (2002). Space‐based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. Journal of Geophysical Research: Atmospheres, 107(D23), CRI-6.
Preusse, P., Schroeder, S., Hoffmann, L., Ern, M., Friedl-Vallon, F., Ungermann, J., ... & Riese, M. (2009). New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging. Atmospheric Measurement Techniques, 2(1), 299-311.
Prolss, G. W. (1995). Ionospheric F-region storms. Handbook of atmospheric electrodynamics, 2, 195-248.
Qian, L., & Yue, J. (2017). Impact of the lower thermospheric winter‐to‐summer residual circulation on thermospheric composition. Geophysical Research Letters, 44(9), 3971-3979.
Qian, L., Burns, A. G., Solomon, S. C., & Wang, W. (2017a). Carbon dioxide trends in the mesosphere and lower thermosphere. Journal of Geophysical Research: Space Physics, 122(4), 4474-4488.
Qian, L., Burns, A., & Yue, J. (2017). Evidence of the Lower Thermospheric Winter‐to‐Summer Circulation From SABER CO2 Observations. Geophysical Research Letters.
Qian, L., Burns, A., & Yue, J. (2017b). Evidence of the Lower Thermospheric Winter‐to‐Summer Circulation From SABER CO2 Observations. Geophysical Research Letters, 44(20).
Qian, L., Laštovička, J., Roble, R. G., & Solomon, S. C. (2011). Progress in observations and simulations of global change in the upper atmosphere. Journal of Geophysical Research: Space Physics, 116(A2).
Qian, L., Solomon, S. C., & Kane, T. J. (2009). Seasonal variation of thermospheric density and composition. Journal of Geophysical Research: Space Physics, 114(A1).
Randel, W. J., & Wu, F. (2007). A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. Journal of Geophysical Research: Atmospheres, 112(D6).
Randel, W.J. et al., (2004), The SPARC Intercomparison of Middle Atmosphere Climatologies. J. Climate, 17, 986-1003, doi:10.1175/1520 0442(2004)017<0986:TSIOMC>2.0.CO;2.
Rao, D. N., M. V. Ratnam, T. N. Rao, and S. V. B. Rao (2001), Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station, Ann. Geophys., 19, 975–984.
Remsberg, E. E., Marshall, B. T., Garcia‐Comas, M., Krueger, D., Lingenfelser, G. S., Martin‐Torres, J., ... & Brown, C. (2008). Assessment of the quality of the Version 1.07 temperature‐versus‐pressure profiles of the middle atmosphere from TIMED/SABER. Journal of Geophysical Research: Atmospheres, 113(D17).
Rezac, L., Jian, Y., Yue, J., Russell, J. M., Kutepov, A., Garcia, R., ... & Bernath, P. (2015a). Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. Journal of Geophysical Research: Atmospheres, 120(23).
Rezac, L., Kutepov, A., Russell III, J. M., Feofilov, A. G., Yue, J., & Goldberg, R. A. (2015b). Simultaneous retrieval of T (p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 130, 23-42.
Richmond, A. D., E. C. Ridley, and R. G. Roble(1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601–604.
Richter, J. H., Sassi, F., & Garcia, R. R. (2010). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67(1), 136-156.
Richter, J., and R. R. Garcia (2006), On the forcing of the mesospheric semi-annual oscillation in the Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 33, L01806.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., ... & Bloom, S. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624-3648.
Rishbeth, H. (1998). How the thermospheric circulation affects the ionospheric F2-layer. Journal of Atmospheric and Solar-Terrestrial Physics, 60(14), 1385-1402.
Rishbeth, H., & Müller-Wodarg, I. C. F. (1999, June). Vertical circulation and thermospheric composition: a modelling study. In Annales Geophysicae (Vol. 17, No. 6, pp. 794-805). Springer-Verlag.
Rishbeth, H., & Setty, C. S. G. K. (1961). The F-layer at sunrise. Journal of Atmospheric and Terrestrial Physics, 20(4), 263-276.
Rishbeth, H., Müller-Wodarg, I. C. F., Zou, L., Fuller-Rowell, T. J., Millward, G. H., Moffett, R. J., ... & Aylward, A. D. (2000, August). Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. In Annales Geophysicae (Vol. 18, No. 8, pp. 945-956). Springer-Verlag.
Rishbeth, H., Sedgemore-Schulthess, K. J. F., & Ulich, T. (2000, March). Semiannual and annual variations in the height of the ionospheric F2-peak. In Annales Geophysicae (Vol. 18, No. 3, pp. 285-299). Springer-Verlag.
Roble, R. G., and R. E. Dickinson (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys. Res. Lett., 16, 1441–1444, doi:10.1029/GL016i012p01441.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson (1988), A coupled thermosphere/ionosphere general circulation model,Geophys. Res. Lett., 15,1325–1328.
Russell, J. M., III, M. G. Mlynczak, L. L. Gordley, J. J. Tansock Jr., and R. W. Esplin (1999), Overview of the SABER experiment and preliminary calibration results, SPIE Proc., 3756, 277–288, doi:10.1117/12.366382.
Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M. E., & Forbes, J. M. (2012). Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. Journal of Geophysical Research: Atmospheres, 117(D13).
Sasi, M. N., and L. Vijayan (2001), Turbulence characteristics in the tropical mesosphere as obtained by MST radar at Gadanki (13.5°N, 79.2°E), Ann. Geophys., 19, 1019–1025.
Sassi, F., and R. R. Garcia (1997), The role of equatorial waves forced by convection in the tropical semiannual oscillation, J. Atmos. Sci., 54, 1925–1942.
Schmidt, H., & Brasseur, G. P. (2006). The response of the middle atmosphere to solar cycle forcing in the Hamburg Model of the Neutral and Ionized Atmosphere. Space Science Reviews, 125(1-4), 345-356.
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., ... & Walters, S. (2006). The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19(16), 3903-3931.
Schroeder, S., Preusse, P., Ern, M., & Riese, M. (2009). Gravity waves resolved in ECMWF and measured by SABER. Geophysical Research Letters, 36(10).
Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shepherd, G. G., McLandress, C., & Solheim, B. H. (1995). Tidal influence on O (¹S) Airglow emission rate distributions at the geographic equator as observed by WINDII. Geophysical Research Letters, 22(3), 275-278.
Shepherd, G. G., Roble, R. G., McLandress, C., & Ward, W. E. (1997). WINDII observations of the 558 nm emission in the lower thermosphere: the influence of dynamics on composition. Journal of Atmospheric and Solar-Terrestrial Physics, 59(6), 655-667.
Shibata, K., & Kodera, K. (2005). Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle. Journal of atmospheric and solar-terrestrial physics, 67(1), 125-143.
Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, P. (1999). Solar cycle variability, ozone, and climate. Science, 284(5412), 305-308.
Siskind, D. E., Drob, D. P., Dymond, K. F., & McCormack, J. P. (2014). Simulations of the effects of vertical transport on the thermosphere and ionosphere using two coupled models. Journal of Geophysical Research: Space Physics, 119(2), 1172-1185.
Smith, A. K. (2012). Global dynamics of the MLT. Surveys in Geophysics, 33(6), 1177-1230.
Smith, A. K., Garcia, R. R., Marsh, D. R., & Richter, J. H. (2011a). WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. Journal of Geophysical Research: Atmospheres, 116(D20).
Smith, A. K., Marsh, D. R., Mlynczak, M. G., & Mast, J. C. (2010). Temporal variations of atomic oxygen in the upper mesosphere from SABER. Journal of Geophysical Research: Atmospheres, 115(D18).
Smith, A. K., Marsh, D. R., Mlynczak, M. G., Russell, J. M., & Mast, J. C. (2011b). SABER observations of daytime atomic oxygen and ozone variability in the mesosphere. In Aeronomy of the Earth′s Atmosphere and Ionosphere (pp. 75-82). Springer, Dordrecht.
Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L., & Vitt, F. M. (2018). Whole atmosphere simulation of anthropogenic climate change. Geophysical Research Letters, 45(3), 1567-1576.
Solomon, S. C., Qian, L., & Roble, R. G. (2015). New 3‐D simulations of climate change in the thermosphere. Journal of Geophysical Research: Space Physics, 120(3), 2183-2193.
Solomon, S., & Brasseur, G. (1986). Aeronomy of the middle atmosphere. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster & Tokyo, 430.
SPARC, 2002: SPARC Intercomparison of Middle Atmosphere Climatologies. SPARC Report No. 3, Edited by W. Randel, M.-L. Chanin and C. Michaut, 96 pp.
Strobel, D. F., Summers, M. E., Bevilacqua, R. M., DeLand, M. T., & Allen, M. (1987). Vertical constituent transport in the mesosphere. Journal of Geophysical Research: Atmospheres, 92(D6), 6691-6698.
Svoboda, A. A., Forbes, J. M., & Miyahara, S. (2005). A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements. Journal of atmospheric and solar-terrestrial physics, 67(16), 1533-1543.
Swenson, G., Yee, Y., Vargas, F., & Liu, A. (2018). Vertical diffusion transport of atomic oxygen in the mesopause region consistent with chemical losses and continuity: Global mean and inter-annual variability. Journal of Atmospheric and Solar-Terrestrial Physics.
Swinbank, R. and D.A. Ortland, (2003), Compilation of wind data for the UARS Reference Atmosphere Project, J. Geophys. Res., 108, D19, 4615, doi:10.1029/2002JD003135.
Talaat, E. R., & Lieberman, R. S. (1999). Nonmigrating diurnal tides in mesospheric and lower-thermospheric winds and temperatures. Journal of the atmospheric sciences, 56(24), 4073-4087.
Tsutsui, J., Nishizawa, K., & Sassi, F. (2009). Response of the middle atmosphere to the 11‐year solar cycle simulated with the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 114(D2).
Walterscheid, R. L. (1981). Dynamical cooling induced by dissipating internal gravity waves. Geophysical Research Letters, 8(12), 1235-1238.
Walterscheid, R. L. (1982),The semiannual oscillation in the thermosphere as a conduction mode, J. Geophys. Res., 87,10,527–10,535.
Ward, W. E. (1998). Tidal mechanisms of dynamical influence on oxygen recombination airglow in the mesosphere and lower thermosphere. Advances in Space Research, 21(6), 795-805.
Ward, W. E. (1999). A simple model of diurnal variations in the mesospheric oxygen nightglow. Geophysical research letters, 26(23), 3565-3568.
Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research: Space Physics, 110(A5).
Woods, T. N., & Rottman, G. J. (1997). Solar Lyman α irradiance measurements during two solar cycles. Journal of Geophysical Research: Atmospheres, 102(D7), 8769-8779.
Wu, D. L., McLandress, C., Read, W. G., Waters, J. W., & Froidevaux, L. (1998). Equatorial diurnal variations observed in UARS Microwave Limb Sounder temperature during 1991–1994 and simulated by the Canadian Middle Atmosphere Model. Journal of Geophysical Research: Atmospheres, 103(D8), 8909-8917.
Wu, Q., D. A. Ortland, T. L. Killeen, R. G. Roble, M. E. Hagan, H.-L. Liu, S. C. Solomon, J. Xu, W. R. Skinner, and R. J. Niciejewski (2008a), Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. Nonmigrating tide, J. Geophys. Res., 113, A05309, doi:10.1029/2007JA012543.
Wu, Q., Killeen, T. L., Ortland, D. A., Solomon, S. C., Gablehouse, R. D., Johnson, R. M., ... & Franke, S. J. (2006). TIMED Doppler interferometer (TIDI) observations of migrating diurnal and semidiurnal tides. Journal of atmospheric and solar-terrestrial physics, 68(3-5), 408-417.
Wu, Q., Ortland, D. A., Foster, B., & Roble, R. G. (2012). Simulation of nonmigrating tide influences on the thermosphere and ionosphere with a TIMED data driven TIEGCM. Journal of Atmospheric and Solar-Terrestrial Physics, 90, 61-67.
Wu, Q., Ortland, D. A., Killeen, T. L., Roble, R. G., Hagan, M. E., Liu, H. L., ... & Niciejewski, R. J. (2008b). Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 1. Migrating tide. Journal of Geophysical Research: Space Physics, 113(A5).
Wu, Q., Ortland, D. A., Solomon, S. C., Skinner, W. R., & Niciejewski, R. J. (2011). Global distribution, seasonal, and inter-annual variations of mesospheric semidiurnal tide observed by TIMED TIDI. Journal of Atmospheric and Solar-Terrestrial Physics, 73(17-18), 2482-2502.
Xu, J., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G., ... & Franke, S. J. (2009). Seasonal and quasi‐biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). Journal of Geophysical Research: Atmospheres, 114(D13).
Xu, J., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G., ... & Russell, J. M. (2009). Estimation of the equivalent Rayleigh friction in mesosphere/lower thermosphere region from the migrating diurnal tides observed by TIMED. Journal of Geophysical Research: Atmospheres, 114(D23).
Xu, J., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G., ... & Franke, S. J. (2009). Seasonal and quasi‐biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). Journal of Geophysical Research: Atmospheres, 114(D13).
Yamashita, C., Liu, H. L., & Chu, X. (2010). Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming. Geophysical Research Letters, 37(9).
Yamazaki, Y., & Richmond, A. D. (2013). A theory of ionospheric response to upward‐propagating tides: Electrodynamic effects and tidal mixing effects. Journal of Geophysical Research: Space Physics, 118(9), 5891-5905.
Yue, J., Hoffmann, L., & Alexander, M. J. (2013). Simultaneous observations of convective gravity waves from a ground‐based airglow imager and the AIRS satellite experiment. Journal of Geophysical Research: Atmospheres, 118(8), 3178-3191.
Yue, J., Liu, H. L., & Chang, L. C. (2012). Numerical investigation of the quasi 2 day wave in the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres, 117(D5).
Yue, J., Russell, J., Jian, Y., Rezac, L., Garcia, R., López‐Puertas, M., & Mlynczak, M. G. (2015). Increasing carbon dioxide concentration in the upper atmosphere observed by SABER. Geophysical Research Letters, 42(17), 7194-7199.
Yue, J., Wang, W., Ruan, H., Chang, L. C., & Lei, J. (2016). Impact of the interaction between the quasi‐2 day wave and tides on the ionosphere and thermosphere. Journal of Geophysical Research: Space Physics, 121(4), 3555-3563.
Zhang, S. P., Wiens, R. H., Solheim, B. H., & Shepherd, G. G. (1998). Nightglow zenith emission rate variations in O (1 S) at low latitudes from wind imaging interferometer (WINDII) observations. Journal of Geophysical Research: Atmospheres, 103(D6), 6251-6259.
Zhang, X., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., & Mlynczak, M. G. (2006). Monthly tidal temperatures 20–120 km from TIMED/SABER. Journal of Geophysical Research: Space Physics, 111(A10).
Zou, L., Rishbeth, H., Müller-Wodarg, I. C. F., Aylward, A. D., Millward, G. H., Fuller-Rowell, T. J., ... & Moffett, R. J. (2000, August). Annual and semiannual variations in the ionospheric F2-layer. I. Modelling. In Annales Geophysicae (Vol. 18, No. 8, pp. 927-944). Springer-Verlag.
指導教授 Prof. Chee-wei Chang(Prof. Loren Chang) 審核日期 2019-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明