博碩士論文 101622016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.231.228.109
姓名 賴楷軒(Kai-xuan Lai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 宜蘭平原南緣山區之電性構造
(The geoelectrical structure of southern margin mountain area of the Ilan Plain)
相關論文
★ 時間域電磁法應用於地下金屬之探測★ 應用地電阻法於土石流地滑之研究
★ 大地電磁資料多站多頻分析於 台灣中部及金門地區地殼電性構造★ 台灣東部利稻池上地區深部電性構造
★ 大地電磁法探查台灣清水地熱區★ 大地電磁法應用在台灣地區之海岸效應
★ 車籠埔斷層與梅山斷層之地電研究★ 應用大地電磁法研究台灣地區之電性構造
★ 臺灣深部電性構造及其板塊構造意義★ 整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例
★ 活動斷層電性研究 — 以湖口、新城及山腳斷層為例★ 大地電磁影像加強了解地熱構造:宜蘭清水地熱案例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 宜蘭平原位在臺灣東北方,其淺部充滿來自內陸之沖積物,下方受到沖繩海槽的張裂活動影響,東南邊則有菲律賓海板塊與歐亞大陸板塊碰撞機制形成之琉球海溝,宜蘭平原南緣(24.62N)之菲律賓海板塊已隱沒至深度約50公里。為進一步了解宜蘭平原南緣山區之構造,本研究利用大地電磁法(MT),收集範圍涵蓋宜蘭縣蘇澳鎮、冬山鄉與大同鄉(約121.66E~ 121.86E)等東西一線上之大地電磁資料,總計14個測站,剖線總長約20公里,藉以探討宜蘭平原南緣山區之電性構造。走向分析得出測區構造走向為N75E,與地質背景相符,維度分析發現臺灣東北部屬於三維電性構造,研判與海水效應及臺灣東北方之海底火山岩漿庫、隱沒帶等三維構造有密切關係。為滿足MT二維逆推條件,除了旋轉各測站至剖面之主軸外,同時降低TE資料的權重,以獲致最佳解析之二維剖面,深度可達30公里。
宜蘭平原南緣山區之二維電性剖面大致呈現深度7公里下屬低電阻率構造,包括四處電阻率異常,由淺而深依序為R1、C1、C2與C3:(1)剖面東側深度10至15公里之低電阻率異常(C1),其主要成因為高孔隙相互連通之含鹽度流體與富集黏土礦物;(2)深度15至20公里的低電阻帶(C2),從其低震帶研判認為此區域與含鹽度流體與富集黏土礦物有關聯;(3)深度20公里以下的西側低電阻率異常(C3),對應高VP/VS比值、低震區,此異常區之岩層可能蘊藏豐富的孔隙流體(0.43~1.26 %),推估此異常區除了原先富集於此的地層水之外,亦含有來自下部地殼因變質作用釋出的結晶水及板塊隱沒碰撞所釋放的殼內流體釋,流體的存在將造成礦物熔點下降,恐促使岩石礦物開始發生部份熔融現象,因此,呈現C3低電阻率;(4)深度7公里之寒溪以東的高電阻率物質(R1),根據低磁力異常現象,排除火成岩之可能性,推斷其可能為變質岩,由於其位在脊樑山脈北段,屬變質岩層區,變質岩孔隙率低,較為緻密,電性反映上呈現高電阻率,比對高VP、高VS與低VP/ VS比值,研判該高電阻率異常與中新世中期的厚層板岩有密切關係。
摘要(英) The Ilan plain located in the northeast of Taiwan is filled with alluvial from the inland, and overlaid the activity rifting Okinawa Trough; to the southeast side of the Ilan plain there is Ryukyu trench caused by collision between the Philippine Sea plate and the Eurasian plate. The subducting Philippine Sea plate at Ilan plain (24.6N) is located at a depth of ~50 km. In order to understand the Ilan plain in details, especially the southern margin part of the plain, magnetotelluric method (MT) was employed to study the electrical structures by deploying a profile from east of Suao township to west of Chingshui geothermal areas. A number of 14 wide-banded (0.03 < period < 3,000 s) MT stations were collected, forming a profile of a length of ~20 km. Phase tensor analysis and induction arrows plots show the MT data set close to the 2-D dimensionality except stations close to the east side of the profile to be 3-D structure as they are close to the sea shore. The NLCG 2-D MT inversion algorithm of Rodi and Mackie (2001) was used to generate models of more than 30 km depth, by down weighting the TE mode data during the inversion so as to avoide the 3-D effect.
There are four resistivity anomalies in the optimum inverted MT model, R1, C1, C2 and C3, from shallow to depth accordingly: (1) A low resistivity anomaly (C1) at depth from 10 to 15 km at the eastern side of the profile is observed, the main cause of the low resistivity anomaly is contributed to the interconnected salty water and filled with clay mineral. (2) Beneath C1, there is another low resistivity anomaly (C2) at depth about 15-20 km. C2 and C1 are quite close in space, thus, the main cause of the both could be the interconnected salty water and filled with clay mineral also. (3) The low resistivity anomaly (C3) at depth about 20 km at the west side of the profile is observed. Based on the information of high VP/ VS and low seismicity, it may conclude that where may be rich in pore fluids (about 0.43~1.26% as calculated from Archie’s law). As the collision between the Philippine Sea plate and the Eurasian plate, the lower crust of the subducting Philippine Sea plate prograde metamorphism, water from the dehydration via buoyancy would migrate and deposit to be as C3. (4) At shallow depth less than 7 km, a high resistivity anomaly is observed. Correlated with the magnetic anomaly to be of low, it is reasonable to rule out the possibility of igneous intrusions. Thus, it may suggest that this high resistivity anomalies may be metamorphic rocks based on the profile is located in the Backbone Range of northern Taiwan. Metamorphic rocks are dense and low porosity, response for high resistivity, high VP, high VS, and low VP/ VS infered that it may be dry, and dense thick layer of slate.
關鍵字(中) ★ 大地電磁法
★ 電性構造
★ 電阻率
★ 相位張量
關鍵字(英) ★ magnetotelluric
★ geoelectrical structure
★ resistivity
★ phase tensor
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 序論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 研究流程 2
1.4 研究區域地質概述 2
1.5 本文介紹 3
第二章 大地電磁法資料擷取與資料預處理 11
2.1 引言 11
2.2 儀器設備與測站配置 11
2.2.1 儀器設備 11
2.2.2 測站配置 12
2.3 資料預處理 12
2.3.1 資料預處理流程 12
2.3.2 選端參考法 13
2.3.3 MT資料點篩選 13
2.3.4 測站資料預處理相關訊息 14
2.4 資料品質分析 16
2.4.1 視電阻率與相位分析 16
2.4.2 預測相關度分析 17
2.4.3 訊雜比分析 18
第三章 相位張量與維度分析 34
3.1 引言 34
3.2 張量分解 34
3.2.1 電流扭曲與靜態偏移效應 34
3.2.2 相位張量 35
3.2.3 Bahr參數 38
3.2.4 感應指針 38
3.3 維度分析 39
3.3.1 電性構造走向分析 39
3.3.2 感應指針資料分析 40
3.3.3 相位張量資料分析 41
3.3.4 總論維度分析 41
第四章 大地電磁法逆推與異常體敏感度測試 53
4.1 引言 53
4.2 靜態偏移修正 53
4.3 參數試驗 53
4.3.1 底限誤差參數 54
4.3.2 平滑參數測試 54
4.3.3 深度靈敏度測試 55
4.3.4 逆推參數 56
4.4 異常體敏感度測試 56
第五章 討論 73
5.1 地殼電阻率的影響因素 73
5.1.1 溫度效應 73
5.1.2 流體含量、流體含鹽度 73
5.1.3 部份熔融 74
5.1.4 石墨 74
5.1.5 綜論電阻率影響因素 75
5.2 電性模型解釋 75
5.3 測區鄰近之MT資料比較 77
第六章 結論 89
參考文獻 91
附錄A 大地電磁法理論 96
A.1 引言 96
A.2 大地電磁法基本假設 96
A.3 大地電磁法基本原理 97
A.3.1 一維荷姆霍茲方程式(Helmholtz equations) 97
A.3.2 集膚深度 98
A.3.3 相速 98
A.3.4 視電阻率 99
A.4 阻抗張量 99
A.5 二維大地電磁法之TE與TM型態 100
附錄B 大地電磁法野外施測 102
B.1 野外施測地點選擇與注意事項 102
B.2 儀器擺設方式 102
B.3 設站步驟與注意事項 102
附錄C 大地電磁法逆推原理 106
參考文獻 Archie, G. E., “The electrical resistivity log as an aid in determining some reservoir characteristics ”, Trans. AIME., Vol. 146, pp. 54-62, 1942.
Bahr, K., “Geological noise in magnetotelluric data: A classification of distortion types ”, Physics of the Earth and Planetary Interiors, Vol. 66, pp. 24-38, 1991.
Bertrand, E. A., M. J. Unsworth, C. W. Chiang, C. S. Chen, C. C. Chen, F. T. Wu, E. Turkoglu, H. L. Hsu, and G. J. Hill, “Magnetotelluric imaging beneath the Taiwan orogeny: An arc-continent collision ”, J. Geophys. Res., Vol. 117, B01402, 2012.
Bibby, H. M., “Analysis of multiple-source bipole-dipole resistivity surveys using the apparent resistivity tensor ”, Geophysics, Vol. 51, pp. 972–983, 1986.
Bibby, H. M., T. G. Caldwell, and C. Brown, “Determinable and non-determinable parameters of galvanic distortion in magnetotellurics ”, Geophys. J. Int., Vol. 163, pp. 915-930, 2005.
Bjornsson. A., “Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes ”, Tectonphysics, Vol. 447, pp. 136-141, 2008.
Booker, J. R.,Magentotelluric phase tensor evolution, Nabighian, University of Washington, Electromagnetic Induction Workshop, 2012.
Cagniard, L., “Basic theory of the magnetotelluric method of geophysical prospecting ”, Geophysics, Vol. 18, pp. 605-635, 1953.
Caldwell, T. G., H. M. Bibby, and C. Brown , “The magnetotelluric phase tensor ”, Geophys. J. Int., Vol. 158, pp. 457-469, 2004.
Chave, A. D., and J. T. Smith, “On electric and magnetic galvanic distortion tensor decomposition ”, J. Geophys. Res., Vol. 99, pp. 4669-4682, 1994.
Chen, C. S., C. C. Chen, C. W. Chiang, H. L. Shu, W. H. Chiu, M. J. Unsworth, and E. Bertrand, “Crustal resistivity anomalies beneath central Taiwan Imaged by a broadband magnetotelluric transect ”, Terr. Atmos. Ocean. Sci., Vol. 18, pp. 19-30, 2007.
Chiang, C. W., C. C. Chen, M. J. Unsworth, E. A. Bertrand, C. S. Chen, T. Duy Kieu, and H. L. Hsu, “The deep electrical structure of southern Taiwan and its tectonic implications ”, Terr. Atmos. Ocean. Sci., Vol. 21, pp. 879-895, 2010.
Constable, S. C., R. L. Parker, and C. G. Constable, “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data ”, Geophysics, Vol. 52, pp. 289-300, 1987.
Dai, L., and S. Karato, “Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere ”, Proceedings of the Japan Academy, Vol. 85, pp. 466-475, 2009a.
Frost, B. R., W. S. Fyfe, K. Tazzkl, and T. Chan, “Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust ” Nature, Vol. 340, pp. 134-136, 1989.
Gamble, T. D., W. M. Goubau, and J. Clarke, “Magnetotellurics with a remote magnetic reference ”, Geophys., Vol. 44, pp. 53-68, 1979.
Groom, R. W. and K. Bahr, “Correction for near-surface effects: Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion ”, Surveys in Geophysics, Vol. 13, pp. 341-379, 1992.
Heise, W., H. M. Bibby, T. G. Caldwell, S. C. Bannister, Y. Ogawa, S. Takakura, and T. Uchida, “Melt distribution beneath a young continental rift : The Taupo volcanic zone , New Zealand ”, Geophys. Res. Lett., Vol. 34, L14313, 2007.
Heise, W., T. G. Caldwell, H. M. Bibby, and S. C. Bannister, “Three-dimensional modeling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand ”, Geophys. J. Int., Vol. 173, pp. 740-750, 2008.
Hou, C. S., J. C. Hu, K. E. Ching, Y. G. Chen, C. L. Chen, L. W. Cheng, C. L. Tang, S. H. Huang, and C. H. Lo, “The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough ”, Tectonphysics, Vol. 466, pp. 344-355, 2009.
Huang, H. H., J. B. H. Shyu, Y. M. Wu, C. H. Chang, and Y. G. Chen, “Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension ”, J. Geophys. Res., Vol. 117, B01313, 2012.
Jeanloz R., and S. Morris, “Temperature distribution in the crust and mantle ”, Ann. Rev. Earth planet. Sci., Vol. 14, pp. 377-415, 1985.
Jeng, F. S., M. L. Lin, C. Y. Lu, and K. P. Huang, “Characteristics of seismic energy release of subduction zones—examples from Taiwan ”, Eng. Geo., Vol. 67, pp. 17-38, 2002.
Jones, A. G., Electrical conductivity of the continental lower crust, Continental lower crust, Elsevier, Chapter 3, pp. 81-143, 1992.
Karato S., and D. Wang, Electrical conductivity of minerals and rocks, Wiley-Blackwell, Physics and Chemistry of the deep earth, 2013.
Kariya, K. A., and T. J. Shankland, “Electrical conductivity of dry lower crustal rocks ”, Geophysics, Vol. 48, pp. 52-61, 1983.
Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen, “Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region ”, J. Geophys. Res., Vol. 162, pp. 204-220, 2005.
Kuo-Chem, H., F. T. Wu, and S. W. Roecker, “Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets ”, J. Geophys. Res., Vol. 117, B06306, 2012.
Lachenbruch, A. H., T. J., and M. E. Ander, “Crustal temperature and heat production: implications of the linear heat flow relation ”, J. Geophys. Res., Vol. 75, 1970.
Lee, C. R., and W. T. Chang, 「Preliminary heat flow measurements in Taiwan」, Proceedings of the Forth Circum-Pacific energy and mineral resources conference, Singapor, 1986.
Li, S., M. J. Unsworth, J. R. Booker, W. Wei, H. Tan, and A. G. Jones, “Partriall melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data ”, Geophys. J. Int., Vol. 153 pp. 289-304, 2003.
Lin, J. Y., S. K. Hsu, and J. C. Sibuet, “Melting fratures along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence ”, J. Geophys. Res., Vol. 109, B12402, 2004.
Mckay, A. J., 「Geoelectric fields and geomagnetically induced currents in the Uniter Kingdom」, Ph.D. Thesis, University of Edinburgh, 2003.
Menke, W., and Sparks D, “Crustal accretion model for Iceland predicts ‘cold’ crust ”, Geophys. Res. Lett., Vol. 22, pp. 1673-1676, 1995.
Moorkamp, M., “Comment on ‘the magnetotelluric phase tensor’ by T. Grant Caldwell, Hugh M. Bibby and Colin Brown ”, Geophys. J. Int., Vol. 171, pp. 565-566, 2007.
Nesbitt, B., “Electrical resistivities of crustal fluids ”, J. Geophys. Res., Vol. 98, pp. 4301-4310, 1970.
Palacky, G. J., Resistivity characteristics of teologic targets, in electromagnetic methods in applied geophysics theory, M.N. Nabighian, Ed., Soc. Explor. Geophys., Tulsa, Oklahoma, Vol. 1, pp. 53-129, 1987.
Parkhomenko, E. I., Electrical properties of rocks, Columbia University, USA, 314pp, 1967.
Parkinson, W. D., “Directions of rapid geomagnetic fluctuations ”, Geophys. J. R. Astr. Soc., Vol. 2, pp. 1-4, 1959.
Partzsch, G. M., F. R. Schilling, J. Arndt, “The influence of partial melting on the electrical behavior of crustal rocks: Laboratory examinations, model calculations and geological interpretations ”, Tectonphysics, Vol. 317, pp. 189-203, 2000.
Rodi, W., and R. L. Mackie, “Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion ”, Geophysics., Vol. 66, pp. 174-187, 2001.
Shankland, T. J., and M. E. Ander, “Electrical conductivity, temperature and fluids in the lower crust ”, J. Geophys. Res., Vol. 88, pp. 9475-9487, 1983.
Simpson, F., and K. Bahr, Practical magnetotellurics, Cambridge University, UK, 2005.
Singer, B. Sh., “Correction for distortion of magnetotelluric fields : Limits of validity of the static approach ”, Surv. Geophys., Vol. 13, pp. 309-340, 1992.
Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima, “Three-dimensional magnetotelluric inversion: Data-space method ”, Physics of the Earth and Planetary Interiors, Vol. 150, pp. 3-14, 2005.
Sternberg, B. K., J. C. Washburne, and L. Pellerin, “Correction for the static shift in magnetotellurics using transient electromagnetic soundings ”, Geophysics., Vol. 53, pp. 1459-0135, 1988.
Tong L. T., S. Ouyang, T. R. Guo, C. R. Lee, K. H. Hu, C. L. Lee, and C. J. Wang, “Insight into the geothermal structure in Chingshui, Ilan, Taiwan ”, Terr. Atmos. Ocean. Sci., Vol. 19, pp. 413-424, 2008.
Vozoff, K., “The magnetotelluric method in the exploration of sedimentary basins ”, Geophysics, Vol. 37, pp. 97-141, 1972.
Vozoff, K., The magnetotelluric method, Electromagnetic methods in applied geophysics, Soc. Explor. Geophys., Tulsa, Oklahoma, Vol. 2B, pp. 641-711, 1991.
Wannamaker, P. E., G. R. Jiracek, J. A. Stode, T. G. Caldwell, V. M. Gonzalezm J. D. McKnight, and A. D. Porter “Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data ”, J. Geophys. Res., Vol. 107, 2002.
Wannamaker, P. E., T. G. Caldwell, G. R. Jiracek, V. Maris, G. J. Hill, Y. Ogawa, H. M. Bibby, S. L. Bennie, and W. Heise. Tazzkl, and T. Chan, “Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand ” Nature, Vol. 460, pp. 733-737, 2009.
Weckmann, U., “Making and breaking of a continent: Following the scent of geodynamic imprints on the African continent using electromagnetics ”, Surv. Geophys., Vol. 33, pp. 107-134, 2011.
Wells, P. R. A., “Thermal models for the magmatic accretion and subsequent metamorphism of continental crust ”, Physics of the Earth and Planetary Interiors, Vol. 46, pp.253-265, 1980.
Wiese, H., “Geomagnetische tiefensondierung. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstands, erschlossen aus geomagnentischen variation ”, Geofis. Pura et Appl., Vol. 52, pp. 83-103, 1962.
Wu, F. T., W. T. Liang, J. C. Lee, H. Benz, and A. Villasenor, “A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/ separation, and subduction boundaries ”, J. Geophys. Res., Vol. 114, B07404, 2009
Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac, “Seismic tomography of Taiwan : Improved constraints from a dense network of strong motion station ”, J. Geophys. Res., Vol. 112, B08312, 2007.
Yang, X., “Origin of high electrical conductivity in the lower continental crust: A revier ”, Surv. Geophys., Vol. 32, pp.875-903, 2011.
Yu, S. B., H. Y. Chen, L. C. Kuo, S. E. Lallemand, and H. H. Tsien, “Velocity field of GPS station in the Taiwan area ”, Tectonphysics, Vol. 274, pp. 41-59, 1997.
Tikhonov, A. N, 電法勘探,中國地質大學,1990。
林啟文,林偉雄,五萬分之一臺灣地質圖 圖幅第十五號 三星,經濟部中央地質調查所,1996。
林啟文,高銘健,五萬分之一臺灣地質圖 圖幅第十六號 蘇澳,經濟部中央地質調查所,1997。
姜智文,「臺灣深部電性構造及其板塊構造意義」,國立中央大學,博士論文,2010。
徐漢倫,「大地電磁法探查台灣清水地熱區」,國立中央大學,碩士論文,2007。
徐漢倫,「台灣天然電磁場觀測研究」,國立中央大學,博士論文,2013。
陳建志,「大地電磁法應用於台灣地區地殼電性構造之研究」,國立中央大學,博士論文,1998。
葉秀柏,「應用大地電磁法研究台灣地區之電性構造」,國立中央大學,碩士論文, 2010。
劉家瑄,「海洋鑽探計畫-子計畫九:南沖繩海槽海洋鑽探計畫井位的震測調查」,行政院國家科學委員會專題研究計畫成果報告,6頁,2002。
劉國棟、鄧前輝,電磁方法研究與勘探,中國地質大學,1993。
指導教授 陳洲生(Chow-son Chen) 審核日期 2014-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明