博碩士論文 101622017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:3.15.147.53
姓名 蘇柏立(Po-Li Su)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵
(High‐resolution 3‐D P wave velocity structures under NE Taiwan and their tectonic implications)
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造
★ 菲律賓民都洛島西北地震地體和上部地函速度構造★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度★ 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性
★ 以雙差分定位法重新定位2017 Batangas地震序列★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析
★ 印度尼西亞蘇拉威西島地震構造★ 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程
★ 2021南投深部地震的構造意義★ 以二維地震波模擬探討臺灣東北部雙重P波之觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究結合台灣東北部固定地震站與宜蘭平原密集地震網所觀測到的近震初達 P 波走時資料逆推台灣東北部的地下三維速度模型。結果相較於前人研究有較高的解析度,使本研究可以詳細檢視一些較為精細的速度異常構造,並探討他們在地體構造上的意涵。首先,本研究介紹並區分了兩種台灣周遭隱沒方向反轉機制的模型,分別是撕裂模型與斷離模型。兩者針對菲律賓海板塊與歐亞板塊在台灣東部的邊界及菲律賓海板塊隱沒至北台灣之下的西緣有不同的預測。以地體動力學的觀點來看,斷離模型與隱沒擠入體模型較相近,因為隱沒至北台灣底下的歐亞板塊斷離所造成的地函空窗,會使隱沒的菲律賓海板塊像是一個擠入體(indenter)向西移入。接著,本研究自逆推所得的菲律賓海板塊高速異常提取板塊邊界與隱沒的菲律賓海板塊西緣,發現兩者與隱沒擠入體模型描述的一致,因此本研究的觀測較支持斷離模型。此外,本研究在地函楔中觀測到一高速異常,可被解釋為先前隱沒到此區域的地殼產生榴輝岩化,或是其上覆板塊的地殼山根榴輝岩化。而在台北盆地與大屯火山群底下觀測到的低速異常與地函楔相連,暗示菲律賓海板塊在北台灣的隱沒對火山活動的影響,一方面可能是透過山脈垮塌引發地函上湧,也可能是透過隱沒板塊脫水效應產生液體。最後,宜蘭平原底下的低速異常向東連結到沖繩海槽,顯示與弧後擴張的關聯性。
摘要(英) First P-wave arrival-time data from local earthquakes recorded by a dense geophone array deployed on the Ilan Plain and by existing permanent stations were combined to invert for high-resolution P-wave velocity structures under northeast Taiwan. With relatively high resolution, we were able to examine the structures in more detail and to investigate their significance and tectonic implications. We introduce two distinct groups of proposals for mechanisms of subduction polarity flipping in Taiwan, referred to as the “tear model” and “breakoff model”. While the predicted boundaries of the Philippine Sea Plate – the junction with the Eurasian Plate in eastern Taiwan and the west edge beneath northern Taiwan – differ between the two models, those of the breakoff model and the related subducting indenter model are geodynamically similar in that the mantle window opened by the detached Eurasian lithosphere beneath northern Taiwan facilitates the westerly movement of the Philippine Sea slab and thus the subducting indenter in eastern Taiwan. The surface junction as extrapolated and the west edge as determined by the imaged high
Vp anomalous Philippine Sea Plate in this study comply with those predicted by the subducting indenter model and thus favor the breakoff model over the tear model. On the other hand, while the observed high Vp anomalous region in the mantle wedge can be explained as eclogitization of previously subducted crust, eclogitization of the overriding continental crustal roots cannot be ruled out. As for the low Vp anomalies, those beneath the Taipei Basin and the Tatun Volcano Group exhibit a pattern potentially connected to the low Vp anomalies in the mantle wedge, suggesting the involvement of the Philippine Sea slab, either by asthenospheric upwelling due to extensional collapse or by fluid migration due to slab dehydration. Those beneath the Ilan Plain exhibit a low Vp pattern surrounded by high Vp anomalies of the metamorphic rocks in the northern Taiwan mountain belt and extend to deeper origins in the eastern offshore region, suggesting a connection with the opening of the Okinawa Trough.
關鍵字(中) ★ 速度構造
★ 層析成像
★ 宜蘭平原
★ 琉球隱沒帶
★ 隱沒反轉
★ 沖繩海槽
關鍵字(英) ★ travel-time tomography
★ flipping of subduction polarity
★ plate boundary
★ ryukyu subduction zone
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1.1 研究動機與目的 1
1.2 論文架構 2
第二章、區域地質背景 3
2.1 區域地體架構 3
2.2 隱沒方向反轉的機制 7
2.2.1 撕裂模型 7
2.2.2 斷離模型 8
2.2.3 相關的地球物理觀測 8
第三章、研究資料 29
3.1 資料蒐集 29
3.2 資料處理 42
3.3 納入固定站資料 56
第四章、三維速度構造層析成像方法 60
4.1 理論背景 60
4.2 有限差分法層析成像(FDTOMO) 65
4.2.1 研究區域格點參數化 65
4.2.2 計算理論走時 65
4.2.3 計算波線路徑與建構算核G 67
4.2.4 逆推 68
4.2.5 解析度評估方法 70
第五章、結果 80
5.1 深度剖面 81
5.2 南北向鉛直剖面 84
5.3 三維立體圖 90
5.4 Spike測試 94
5.5 使用宜蘭地震網資料的效果 98
第六章、討論 100
6.1 與前人研究比較 100
6.2 淺部地體構造 105
6.3 以H1的形貌檢驗隱沒反轉機制模型 107
6.4 造山帶下的榴輝岩化與H2的解釋 109
第七章、結論 112
參考文獻 114
附錄A 122
參考文獻 Allen, R. (1982). Automatic phase pickers: their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242.

Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103(B12), 30055–30078. https://doi.org/10.1029/98JB02467

Cagnioncle, A. M., Parmentier, E. M., & Elkins‐Tanton, L. T. (2007). Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. Journal of Geophysical Research: Solid Earth, 112, B09402. https://doi.org/10.1029/2007jb004934

Chou, H. C., Kuo, B. Y., Chiao, L. Y., Zhao, D., & Hung, S. H. (2009). Tomography of the westernmost Ryukyu subduction zone and the serpentinization of the fore‐arc mantle. Journal of Geophysical Research: Solid Earth, 114, B12301. https://doi.org/10.1029/2008JB006192

Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B7), 9761-9788. https://doi.org/10.1029/95JB00259

Chung, S. L., Wang, S. L., Shinjo, R., Lee, C. S., & Chen, C. H. (2000). Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 12, 225-230. https://doi.org/10.1046/j.1365-3121.2000.00298.x

Cloos, M., & Shreve, R. L. (1988). Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure and Applied Geophysics, 128, 455–500. https://doi.org/10.1007/BF00874548

Engdahl, E. R., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88(3), 722–743.

Font, Y., Liu, C. S., Schnurle, P., & Lallemand, S. (2001). Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics, 333, 135–158. https://doi.org/10.1016/S0040-1951(00)00272-9

Frisch, W., Meschede, M., & Blakey, R. C. (2010). Plate tectonics: continental drift and mountain building. Springer Science & Business Media.

Harvey, D., (2002). Antelope methods for seismic network processing. 2002 Antelope Workshop in Waikaloa, Hawaii.

Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1–3), 1–16. https://doi.org/10.1016/0040-1951(86)90004-1

Hole, J. A., & Zelt, B. C. (1995). 3-D finite-difference reflection traveltimes. Geophysical Journal International, 121(2), 427–434. https://doi.org/10.1111/j.1365-246X.1995.tb05723.x

Hou, C. S., Hu, J. C., Ching, K. E., Chen, Y. G., Chen, C. L., Cheng, L. W., et al. (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466(3), 344–355. https://doi.org/10.1016/j.tecto.2007.11.022

Hsu, S. K., Liu, C. S., Shyu, C. T., Liu, S. Y., Sibuet, J. C., Lallemand, S., Wang, C. S., & Reed, D. (1998). New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terr. Atmos. Oceanic Sci., 9(3), 509–532. https://doi.org/10.3319/TAO.1998.9.3.509(TAICRUST)

Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1), 4–18. https://doi.org/10.1016/j.tecto.2008.11.016

Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117, B01313. https://doi.org/10.1029/2011JB008852

Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026

Huangfu, P., Wang, Y., Li, Z., Fan, W., & Zhang, Y. (2016). Effects of crustal eclogitization on plate subduction/collision: implication for India-Asia collision. Journal of Earth Science, 27, 727-739. https://doi.org/10.1007/s12583-016-0701-9

Kanamori, H., Lee, W. H., & Ma, K. F. (2012). The 1909 Taipei earthquake—implication for seismic hazard in Taipei. Geophysical Journal International, 191(1), 126–146. https://doi.org/10.1111/j.1365-246X.2012.05589.x

Kao, H., Shen, S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211–7229. https://doi.org/10.1029/97JB03510

Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., & Shen, P. (2005). Three-dimensional VP and VS structural model associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int., 162, 204–220. https://doi.org/10.1111/j.1365-246X.2005.02657.x.

Ko, Y. T., Kuo, B. Y., Wang, K. L., Lin, S. C., & Hung, S. H. (2012). The southwestern edge of the Ryukyu subduction zone: a high Q mantle wedge. Earth and Planetary Science Letters, 335–336, 145–153. https://doi.org/10.1016/j.epsl.2012.04.041

Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117, B06306. https://doi.org/10.1029/2011JB009108

Lallemand, S., Font, Y., Bijwaard, H., & Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3), 229–253. https://doi.org/10.1016/S0040-1951(01)00071-3

Leech, M. L. (2001). Arrested orogenic development: Eclogitization, delamination, and tectonic collapse. Earth Planet. Sci. Lett., 185, 149–159. https://doi.org/10.1016/S0012-821X(00)00374-5

Lin, J. Y., Hsu, S. K., & Sibuet, J. C. (2004). Melting features along the western Ryukyu slab edge (northeast Taiwan): tomographic evidence. Journal of Geophysical Research: Solid Earth, 109, B12402. https://doi.org/10.1029/2004JB003260

Ma, K. F., Wang, J. H., & Zhao, D. (1996). Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J. Phys. Earth, 44, 85–105. https://doi.org/10.4294/jpe1952.44.85

Maeda, N. (1985). A method for reading and checking phase times in auto-processing system of seismic wave data. Zisin, 38, 365–379.

Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic press.

Minakov, A., Mjelde, R., Faleide, J. I., Flueh, E. R., Dannowski, A., & Keers, H. (2012). Mafic intrusions east of Svalbard imaged by active-source seismic tomography. Tectonophysics, 518–521, 106–118. https://doi.org/10.1016/j.tecto.2011.11.015

Paige, C.C., Saunders, M.A. (1982). LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw., 8 (1), 43–71.

Paulatto, M., Laigle, M., Galve, A., Charvis, P., Sapin, M., Bayrakci, G., Evain, M., & Kopp, H. (2017). Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles. Nat. Commun., 8, 15980. https://doi.org/10.1038/ncomms15980

Pavlis, G. L., Vernon, F., Harvey, D., & Quinlan, D. (2004). The generalized earthquake-location (GENLOC) package: An earthquake-location library. Computers & Geosciences, 30(9-10), 1079-1091. https://doi.org/10.1016/j.cageo.2004.06.010

Rau, R. J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth Planet. Sci. Lett., 133(3–4), 517–532. https://doi.org/10.1016/0012-821X(95)00076-O

Rawlinson, N., & Sambridge, M. (2003). Seismic traveltime tomography of the crust and lithosphere. Advances in Geophysics, 46, 81-197.

Roecker, S., Thurber, C., Roberts, K., & Powell, L. (2006). Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics, 426(1), 189–205. https://doi.org/10.1016/j.tecto.2006.02.026

Roecker, S. W., Yeh, Y. H., & Tsai, Y. B. (1987). Three-dimensional P and S wave velocity structures beneath Taiwan–deep structure beneath an arc-continent collision. J. Geophys. Res., 92(B10), 10547–10570. https://doi.org/10.1029/JB092iB10p10547

Sandrin, A., & Thybo, H. (2008). Seismic constraints on a large mafic intrusion with implications for the subsidence history of the Danish Basin. Journal of Geophysical Research: Solid Earth, 113, B09402. https://doi.org/10.1029/2007JB005067

Shearer, P. M. (2019). Introduction to seismology. Cambridge university press.

Shin, T. C., Chang, C. H., Pu, H. C., Lin, H. W., & Leu, P. L. (2013). The Geophysical Database Management System in Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 24(1), 11–18. https://doi.org/10.3319/TAO.2012.09.20.01(T)

Suppe, J. (1981). Mechanics of mountain building in Taiwan. Memoir of the Geological Society of China, 4, 67–89.

Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and backarc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21–33.

Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1–4), 57–76. https://doi.org/10.1016/0040-1951(90)90188-E

Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.

Teng, L. S., Lee, C. T., Tsai, Y. B., & Hsiao, L. Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155–158. https://doi.org/10.1130/0091-7613(2000)28<155:SBAAMF>2.0.CO;2

Tong, L. T., Ouyang, S., Guo, T. R., Lee, C. R., Hu, K. H., Lee, C. L., & Wang, C. J. (2008). Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 19(4), 413-424. https://doi.org/10.3319/TAO.2008.19.4.413(T)

Vidale, J.E. (1988). Finite-difference calculation of travel times. Bull. Seism. Soc. Am., 78 (6), 2062–2076.

Vidale, J. E. (1990). Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55(5), 521-526. https://doi.org/10.1190/1.1442863

Wang, K. L., Chung, S. L., Chen, C. H., Shinjo, R., Yang, T. F., & Chen, C. H. (1999). Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308(3), 363-376. https://doi.org/10.1016/S0040-1951(99)00111-0

Wang, K. L., Chung, S. L., O′reilly, S. Y., Sun, S. S., Shinjo, R., & Chen, C. H. (2004). Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45(5), 975–1011. https://doi.org/10.1093/petrology/egh001

Wang, Z., Fukao, Y., Zhao, D., Kodaira, S., Mishra, O. P., & Yamada A. (2009). Structural heterogeneities in the crust and upper mantle beneath Taiwan. Tectonophysics, 476(3–4), 460–477. https://doi.org/10.1016/j.tecto.2009.07.018

Wang, Z., Zhao, D., Wang, J., & Kao, H. (2006). Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophys. Res. Lett., 33, L18306. https://doi.org/10.1029/2006GL027166

Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth, 114, B07404. https://doi.org/10.1029/2008JB005950

Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved con-straints from a dense network of strong-motion stations. Journal of Geophysical Research: Solid Earth, 112, B08312. https://doi.org/10.1029/2007JB004983

Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M., & Hsu, S. K. (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054. https://doi.org/10.1111/j.1365-246X.2009.04180.x

Zhang, H., Thurber, C., & Rowe, C. (2003). Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America, 93(5), 1904–1912. https://doi.org/10.1785/0120020241

Zhao, D., Wang, Z., Umino, N., & Hasegawa, A. (2009). Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics, 467(1), 89–106. https://doi.org/10.1016/j.tecto.2008.12.017

石政為(2011)。利用反射震測探討宜蘭平原之基盤深度及構造演化。國立中央大學碩士論文,共110頁。

陳燕玲 (1995)。臺灣地區三維速度構造與隱沒構造之相關探討。國立中央大學碩士論文,共172頁。
指導教授 陳伯飛 審核日期 2020-4-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明