博碩士論文 101622020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.235.30.155
姓名 范仲奇(Chung-chi Fan)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 透地雷達特性分析應用於油品污染物探測
(Detection of Hydrocarbon Contaminant Using Attribute Analysis for GPR Data)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析
★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料
★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類對於石油資源的需求隨著經濟發展而與日俱增,石油除了作為供給能量的燃料之外,亦可進一步精煉成多種副產品,作為其他產品的製造原料。然而因人為操作管理不當所導致的洩漏、管線破損或非法棄置,對於環境生態的衝擊也日趨嚴重,造成人類健康風險上的威脅。石油碳氫化合物所造成的污染因其密度比水輕、水中溶解度低的特性,被稱為輕質非水相液體(Light Non Aqueous Phase Liquids,簡稱 LNAPLs)。土壤採樣、地下水監測井設置、地下水採樣、現地快速篩測及實驗室化學分析等,為目前污染場址調查時最常採用的方法。從現地資料收集、樣品採集、專一或多種化學物定性/定量分析,到最終數據闡釋及場址污染概念模式建立,需要多樣專業技術的跨平台整合才有辦法達成,而這些複雜且昂貴的成本花費,為的就是能清楚且準確的掌握場址污染的範圍、程度與發生的來源。前述的污染調查技術有個共通點,就是往往需要高密集度的採樣才能完整地瞭解場址污染狀況,降低因採樣佈點所造成的漏失風險。如何在調查目的、調查品質與調查經費中取得平衡,為場址調查計畫執行時最重要的關鍵。透地雷達(Ground Penetrating Radar, 簡稱 GPR)為一種近地表高解析度電磁波探測技術;經由透地雷達探測,可快速且大面積地收集場址地表下的資訊,透過資料處理技術做即時性的判釋,在進場調查前期提供場址污染及水文地質相關訊息,有效地在空間上區分且縮限調查範圍,讓接續的調查規劃與資源作更有效率的配置整合,發揮場址調查的最大效益。
特性分析(Attribute analysis)為一種廣泛使用於震波探勘的資料處理技術,在本研究中被應用於透地雷達資料處理,透過特性分析使原本訊號中細微的變化加
以顯現,並用以偵測石油碳氫化合物污染所可能造成的反應。特性分析在透地雷達訊號上的運算快速,所有的資料處理可在現地以一台個人電腦完成,做即時的資料分析與闡釋。在本研究中以三個不同污染程度與類型的場址作為案例分析,用以評估透地雷達與特性分析技術在 LNAPLs 污染場址調查的適用性。
根據實際採樣分析的結果,透地雷達特性分析可顯現並標示污染物所造成的
細微物性變化,透過特性分析中不同特性(Attribute)學理上的定義,用以解釋可
能的成因,並進一步推測可能的污染概念模式。在未飽和層(Vadose zone)土壤中LNAPLs 殘留相(Residual phase)會在地下水位面或毛細帶產生大範圍的污染髒污帶(Smeared zone),當雷達波反射/ 折射於此區帶時,在瞬時相位(Instantaneous phase)上會造成較劇烈的擾動;而在瞬時頻率(Instantaneous frequency)也可觀察到較高且尖銳的頻率反應,進一步探討成因,可能是由殘留相污染物所形成的薄層(Thin beds)所產生的雷達波干涉現象。
本研究將各個不同案例場址所收集的雷達資料與現地實際採樣、分析的結果作比對,證實透地雷達探測污染物所造成細微電性變化的能力,將地球物理探測結果與實際觀察做連結,發展一套結合地球物理探測技術並且具有實務可行性的場址調查方法與策略方向。
摘要(英) Fossil fuel is still the primary source of energy and can be refined to other side products as raw materials or solvents. Spill, uncontrolled disposal, storage tank/pipeline leakage of fuel oil and solvents are threatening to biological system and impacting our living environment and even for human health risk. Hydrocarbon contaminant whose density is lighter than water would be considered as LNAPLs (Light Non Aqueous Phase Liquids). Common approaches including soil sampling, monitoring well installation, groundwater sampling, in-situ screening, and laboratory analysis are conducted during ordinary site investigation. From field sample collections, specific or multi-compounds analyses to data interpretations, all these complicated and expensive efforts are performed in order to detect and confirm the source of contaminant. One common problem which relies on the above mentioned conventional point measurements usually unable to provide clear range of contaminated area without dense sampling. The important issue is how to maintain a good balance among the investigation purpose, field operation quality control and budget. Near-surface GPR (Ground Penetrating Radar) survey provides an economical geophysical approach that offers large scaled, quick survey, real time interpretation and determination of possible occurrence of contaminated site. With preliminary GPR survey, areas of the site can be categorized according to the probability of being contaminated, and further, the range can be narrowed down.
Attribute analysis, a commonly used data processing technique in seismic exploration, is implemented for GPR data to reveal detailed information in detecting the presents of the hydrocarbon contaminant. Three different types of known hydrocarbon contaminated sites are investigated in order to examine its feasibility. GPR profiles acquired from each sites in conjunction with field sampling and laboratory analyses results proposed in our study would provide a useful approach for site investigation, monitoring and remediation. Detailed GPR attribute analysis demonstrates that the proposed approach is capable of detecting minor attribute changes caused by the contamination phases and thus providing very useful information for re-occupied or even for time-lapsed site investigation and monitoring.
The residual phase of LNAPL in the vadose zone will produce a large area of smeared zone. Instantaneous phase which reflects the polarity change shows relative aggressive change across water table in those seriously contaminated area. High and spiky instantaneous frequency can be observed around reflected signals from water table or capillary fringe which could be related to the detection of thin beds. Studying GPR signal attributes is extremely useful as the proposed methodology could provide as a strong indicator for detecting hydrocarbon contamination events.
關鍵字(中) ★ 透地雷達
★ 油品汙染
★ 屬性分析
關鍵字(英) ★ GPR
★ LNAPL
★ Attribute analysis
論文目次 Chapter I Introduction………………………………………………………….....1
1.1 Difficulties of Hydrocarbon Contaminated Site Investigation…………..1
1.2 Purpose of Study…………………………………………………………2
1.3 LNAPL Contamination…………………………………………………..2
1.3.1 Definition of LNAPL………………………………………………….2
1.3.2 Conceptual Model of LNAPL Contamination………………………...3
1.4 Fundamental Understanding of Ground Penetrating Radar……………...5
1.4.1 Constitutive Equations………………………………………………6
1.4.2 Relative Permittivity (Dielectric constant)………………………….7
1.4.3 Wave Properties (Velocity, Attenuation & Impedance)……………..7
1.4.4 Antenna Configuration and Survey Type………………………….10
1.4.5 Two-Way Travel Time and Depth Conversion…………………….11
1.5 Literature Reviews on the Detection of LNAPL Using GPR…………..12
Chapter II Methodology…………………………………………………………….20
2.1 The Complex Trace and the Hilbert Transform……………………….…20
2.2 Attribute Analysis…….………………………………………………….21
2.2.1 Instantaneous Amplitude…………………………………………...22
2.2.2 Instantaneous Phase………………………………………………...23
2.2.3 Instantaneous Frequency…………………………………………….24
2.2.4 Relative Amplitude Change………………………………………...26
2.3 Demonstration on Its Potential Usage in GPR Data…………………….27
2.4 Data Acquisition and Data Processing…………………………………28
Chapter III Field Applications in Various Degree of Contaminated Sites ………..36
3.1 Case I: Seriously Diesel-contaminated Site…………………………….36
3.1.1 Site description…………………………………………………….36
3.1.2 GPR Survey…………………………………………………………37
3.1.3 Observations from Attributes………………………………………..38
3.1.4 Time-lapsed GPR Surveys in Different Tidal Moments…………….39
3.1.5 Summary…………………………………………………………….40
3.2 Case II: Slightly Hydrocarbon Contaminated Site ………………………41
3.2.1 Site Description…………………………………………………......41
3.2.2 GPR Survey…………………………………………………………42
3.2.3 Observations from Attributes……………………………………….42
3.2.4 Summary…………………………………………………………….43
3.3 Case III: Illegal Waste Dumping Site……………………………………44
3.3.1 Site Description……………………………………………………..44
3.3.2 GPR Survey…………………………………………………………44
3.3.3 Observations from Attributes………………………………………45
3.3.4 Summary…………………………………………………………...46
Chapter IV Discussion………………………………………………………………62
4.1 Response of free phase LNAPL in GPR signal………………………….62
4.2 Response from Water Table / Capillary Fringe………………………......63
4.3 Observation of Tidal Water Level Variation……………………………..64
4.4 Detection of Gaseous Phase Contaminant……………………………….65
4.5 Delineation of the Illegal Dumping Area………………………………...67
Chapter V Conclusions……………………………………………………………….73
References…………………………………………………………………………..R-1
參考文獻 Annan, A.P., 2004, Ground penetrating radar-principles, procedures & applications, Sensors & Software Inc., Mississauga, ON L4W 2X8, Canada.
Annan, A.P. & Jol, H.M.(ed.), 2009, Electromagnetic principles of ground penetrating radar, Ground penetrating radar: theory and applications, Elsevier Science, Oxford, OX5 1GB, UK, 10 pp.
Anneser, B., Einsiell, F., Meckenstock, R.U., Richters, L., Wisotzky, F. and Griebler, C., 2008, High-resolution monitoring of biogeochemical gradients in a tar oil contaminated aquifer, Applied Geochemistry, 23, 1715-1730.
Atekwana, E.A., Atekwana, E., Legall, F.D. and Krishnamurthy, R.V., 2005, Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer, Journal of Contaminant Hydrology, 80, 149-167.
Atekwana, E.A., Sauck, W.A. and Werkema Jr., D.D., 2000, Investigations of geoelectrical signatures at a hydrocarbon contaminated site, Journal of Applied Geophysics, 44, 167-180.
Atekwana, E.A., Werkema Jr, D.D., Duris, J.W., Rossbach, S., Atekwana, E.A., Sauck, W.A., Cassidy, D.P., Means, J. and Legall, F.D., 2004, In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site, Geophysics, 69, 56-63.
Baker, G.S., 1998, Applying AVO analysis to GPR data, Geophysical Research Letters, 25, 397-400.
Barnes, A.E., 1992, The calculation of instantaneous frequency and instantaneous bandwidth, Geophysics, 57, 1520-1524.
Barnes, A.E., 1996, Theory of 2-D complex seismic trace analysis, Geophysics, 61, 264-272.
Barnes, A.E., 2007, A tutorial on complex seismic trace analysis, Geophysics, 72, W33-W43.
Barnes, A.E., 2009, The origin and significance of spikes in complex seismic trace attributes, SEG Houston 2009 International Exposition and Annual Meeting, 1048-1052.
Benedetto, F. and Tosti, F., 2013, GPR spectral analysis for clay content evaluation by the frequency shift method, Journal of Applied Geophysics, 97, 89-96.
Bermejo, J.L., Sauck, W.A. And Atekwana, E.A., 1997, Geophysical discovery of a new LNAPL plume at the Former Wurtsmith AFB, Oscoda, Michigan, Ground-Water Monitoring Review, Fall, 131-137.
Bracewell, R.N., 1965, The Fourier transform and its applications, McGraw-Hill Book Co., Inc., New York. ISBN 0-07-007015-6.
Böniger, U. and Tronicke, J., 2012, Subsurface utility extraction and characterization: Combing GPR symmetry and polarization attributes, IEEE Transactions on Geoscience and Remote Sensing, 50, 736-746.
Campbell, D.L., Lucius, J.E., Ellefsen, K.J. and Deszcz-Pan, M., 1996, Monitoring of a controlled LNAPL spill using ground-penetrating radar, Symposium on the Application of Geophysics to Engineering and Environmental Problems, 511-517.
Cassidy, D.P., Werkema Jr., D.D., Sauck, W., Atekwana, E., Rossbach, S. and Duris, J., 2001, The Effects of LNAPL Biodegradation Products on Electrical Conductivity Measurements, Journal of Environmental and Engineering Geophysics, 6, 47-52.
Cassidy, N.J., 2007, Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: Practical implications for hydrological studies, Journal of Contaminant Hydrology, 94, 49-75.
Che-Alota, V., Atekwana, Estella A., Atekwana, Eliot A. Atekwana, Sauck, W.A. and Werkema Jr. D.D., 2009, Case history: Temporal geophysical signatures from contaminant-mass remediation, Geophysics, 74, B113-B123.
Cohen, L., 1995, Time-Frequency analysis, Prentice Hall PTR, Upper Saddle River, New Jersey 07458. ISBN:0-13-594532-1.
Daniels, J.D., 2004, Ground penetrating radar, The institution of electrical engineers, London. ISBN 0-86341-360-9.
Daniels, J.J., Roberts, R. And Vendl, M., 1995, Ground penetrating radar for the detection of liquid contaminants, Journal of Applied Geophysics, 33, 195-207.
Davis, J.L. and Annan, A.P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 531-551.
Deceuster, J. and Kaufmann, O., 2012, Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: A field study an industrial waste land, Journal of Contaminant Hydrology, 136-137, 25-42.
Domenico, P.A., Schwartz, F.W., 1997, Physical and chemical hydrogeology, 2nd, Wiley. ISBN: 978-0-471-59762-9.
Fisher, E., McMechan, G.A. and Annan, A.P., 1992, Acquisition and processing of wide-aperture ground-penetrating radar data, Geophysics, 57, 495-504.
Greaves, R.J., Lesmes, D.P., Lee, J.M. and Toksoz, M.N., 1996, Velocity variation and water content estimated from multi-offset, ground-penetrating radar, Geophysics, 61, 683-695.
Grote, K., Anger, C., Kelly, B., Hubbard, S. and Rubin, Y., 2010, Characterization of soil water content variability and soil texture using GPR groundwave techniques, Journal of Environmental & Engineering Geophysics, 15, 93-110.
Hahn, S.L., 1996, Hilbert transforms in signal processing, Artech House, Inc. 685 Canton Street Norwood, MA 02062. ISBN 0-89006-886-0.
Hanafy, S. and al Hagrey, S.A., 2006, Ground-penetrating radar tomography for soil-moisture heterogeneity, Geophysics, 71, K9-K18.
Jordan, T.E., Baker, G.S, Henn, K. and Messier, J., 2004, Using amplitude variation with offset and normalized residual polarization analysis of ground penetrating radar data to differentiate an NAPL release from stratigraphic changes, Journal of Applied Geophysics, 56, 41-58.
Lane Jr., J.W., Buursink, M.L., Haeni, F.P. and Versteeg, R.J., 2000, Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - results of numerical modeling and physical experiments, Ground Water, 38, 929-938.
McMahon, P.B. and Chapelle, F.H., 1991, Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry, Nature, 349, 233-235.
McMahon, P.B., Vroblesky, D.A., Bradley, P.M., Chapelle, F.H. and Gullett, C.D., 1995, Evidence for enhanced mineral dissolution in organic acid-rich shallow ground water, Ground Water, 33, 207-216
McNaughton, C.H., Mosquera, J.D., Endres, A.L. and Freitas, J.G., 2010, Monitoring of sequential gasoline-ethanol releases using high frequency ground penetrating radar, The 13th International Conference on Ground Penetrating Radar, 1-6.
Olhoeft, G.R., 1992, Geophysical detection of hydrocarbon and organic chemical contamination, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 587-595.
Orlando, L., 2002, Detection and analysis of LNAPL using instantaneous amplitude and frequency of ground-penetrating radar data, Geophysical Prospecting, 50, 27-41.
Porsani, J.L., Slob, E., Lima, R.S. and Leite, D.N., 2010, Comparing detection and location performance of perpendicular and parallel broadside GPR antenna orientations, Journal of Applied Geophysics, 70, 1-8.
Rae Systems Inc., 2010, Correction factors, ionization energies, and calibration characteristics, Technical Note TN-106, 3775 N. First St., San Jose, CA 95134-1708 USA.
Revitt, M.O., Wealthall, G.P., Dearden, R.A. and McAlary, T.A., 2011, Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones, Journal of Contaminant Hydrology, 123, 130-156.
Rouessac, F & Rouessac , A, 2007, Chemical analysis, modern instrumentation methods and techniques ( 2nd edition). John Wiley & Sons, Ltd. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. ISBN 978-0-470-85902-5
Seol, S.J., Kim, J.H., Song, Y.H. and Chung, S.H., 2001. Finding the strike direction of fractures using GPR, Geophysical Prospecting, 49, 300-308.
Sogade, J.A., Scira-Scappuzzo, S., Vichabian, Y., Shi, W., Rodi,W., Lesmes, D.P. and Morgan, F.D., 2006, Induced-polarization detection and mapping of contaminant plumes, Geophysics, 71, B75-B84
Taner, M.T., Koehler, F., and Sheriff, R.E., 1979, Complex seismic trace analysis, Geophysics, 44, 1041-1063.
Taner, M.T., 2001, Seismic Attributes, CSEG Recorder, September, 48-56.
USEPA, 1995, Ground water issue: Light nonaqueous phase liquids, ORD and OSWER joint pubilcation, EPA/540/S-95/500.
Van Dam, R.L., Hendrickx, J.M.H., Cassidy, N.J., North, R.E., Dogan, M. and Borchers, B., 2013, Effects of magnetite on high-frequency ground-penetrating radar, Geophysics, 78, H1-H11.
Van Gestel, J., Stoffa, P.L., 2001, Application of Alford rotation to ground-penetrating radar data, Geophysics, 66, 1781-1792.
Vasco, D.W., Peterson, J.E. and Lee, K.H., 1997, Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media, Geophysics, 62, 1758-1773.
Vaudelet, P., Schmutz, M., Pessel, M., Franceschi, M., Guérin, R., Atteia, O., Blondel, A., Ngomseu, C., Galaup, S., Rejiba, F. and Bégassat, 2011, Mapping of contaminant plumes with geoelectrical methods. A case study in urban context, Journal of Applied Geophysics, 75, 738-751.
Werkema Jr., D.D., Atekwana, E.A., Endres, A.L., Sauck, W.A. and Cassidy, D.P., 2003, Investigation the geoelectrical response of hydrocarbon contamination undergoing biodegradation, Geophysical Research Letters, 30, 49-1 - 49-4.
Wehrer, M. & Totsche, K.U., 2009, Difference in PAH release processes from tar-oil contaminated soil materials with similar contamination history, Chemie der Erde-Geochemistry, 69, 109-124.
Wiedemeier, T.H., Rifai, H.S., Newell, C.J., and Wilson, J.T., 1999, Natural attenuation of fuels and chlorinated solvents in the subsurface, John Wiley & Sons, Inc., ISBN 0-471-19749-1.
Yilmaz, O., 2001, Seismic data analysis: Processing, Inversion and Interpretation of Seismic Data, Society of Exploration Geophysicists, Tulsa, Vol. II, ISBN 1-56080-099-2.
Zhao, W., Forte, E., Pipan, M., and Tian, G., 2013, Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection, Journal of Applied Geophysics, 97, 107-117.
指導教授 陳浩維(How-wei Chen) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明