博碩士論文 101622022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.237.48.165
姓名 林駿廷(Jiun-Ting Lin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用GPS同震位移資料逆推震源機制
(Inversion of GPS coseismic displacements for earthquake source mechanism)
相關論文
★ 利用GPS觀測資料探討台北地區之地殼變形★ 台灣地區大型地震前後地震活動率與庫倫應力的關係
★ GPS時間序列的雜訊分析-美國東盆嶺及黃石蛇河平原觀測網★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測★ 岩石熱導率及其物理性質之經驗關係式研究:以台灣晚期中生代至新生代沉積岩為例
★ 利用測地資料分析花東縱谷北段之地殼變形★ 2012霧台地震同震變形及震源區應力狀態分析
★ 1999 集集地震震後滑移與黏彈性變形之線性反演分析★ 應用雷達差分干涉技術測量印度庫曼南部地表變形
★ 利用GPS觀測資料及塊體模型來探討台灣的地殼變形★ 利用GPS觀測資料及塊體模型分析台灣中部及北部地區地殼變形
★ 結合衛星雷達與GPS觀測資料分析北台灣地表變形★ 利用氣象局新一代井下地震監測網分析台灣地區淺層構造場址放大效應
★ 臺灣中部晚期中新世至更新世二氧化碳 儲集層及蓋層之地層暨礦物組成研究★ 台灣GPS時間序列的雜訊分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用地震儀接收地震所造成的地表運動情形,並利用震源逆推的方法可以計算地震的資訊,包含了地震的位置、規模大小、震源機制等,若能更進一步在地震發生後利用近場資料快速解算這些資訊,將能對破壞性地震波尚未到達的遠場區域做地震預警的準備,或對沿海的海嘯預警。
快速決定地震規模的方法為測量某頻段的地震波振幅值,然而對於大型地震,斷層需要更多時間釋放更大的能量,因此地震波高頻段的振幅將受到限制,在地震大於某規模後逐漸呈現定值,稱為地震規模的飽和(saturate)。反之低頻段的地震波較不受此限制,因此為了避免規模的飽和以得到正確的規模,有效記錄大地震的低頻地表運動訊號是不可缺少的重要關鍵。然而受限於地震儀對低頻訊號的不敏感,再加上大地震可能造成近場的地震儀發生超格(clipping)的問題,因此,利用近場地震資料快速解算震源參數,對大地震而言仍有許多困難。
全球衛星定位系統(Global Positioning System, GPS),提供了大地震近場的地表運動資訊,其低頻記錄的優勢克服了地震儀對低頻地表運動記錄不敏感的問題,另一方面,GPS的記錄沒有超格的問題,因此能夠有效地記錄大地震所造成的地表運動情況。
為了能在大地震發生後穩定的解算震源機制以評估可能造成的災害,本研究建立以GPS靜態位移資料為主的震源機制逆推模型。並使用實際GPS資料逆推2013年發生於台灣的三起地震,分別為2013/03/27 ML 6.2與2013/06/02 ML 6.5的南投地震,與2013/10/31 ML 6.4的瑞穗地震。另外,本研究還分析了兩個規模較大的地震事件,分別為發生於2002年花蓮外海的331地震與2003年的成功地震。所有結果皆與各地震單位計算結果相符,顯示簡化地表運動過程的GPS靜態位移觀測量有足夠能力還原震源機制。甚至,基於GPS對低頻訊號有好的攫取能力,以及沒有記錄超格的問題,我們預期此方法能更穩定的提供大地震的真實震矩規模。
摘要(英) Inversion of the earthquake source information by using seismic data becomes effective and performs well in the last decades. Such information, including source location, earthquake magnitude and focal mechanism, are important for earthquake and tsunami early warning studies.
When earthquakes occur, a preliminarily calculation for earthquake magnitude is based on the amplitude of short period seismic waves in the near-field. However, for larger earthquakes, the energy need more time to release, which constrain the amplitude of high-frequency energy to a constant. Such a phenomenon is called magnitude saturation, which leads us underestimating the true magnitude of large and also devastating earthquakes. In order to calculate the magnitude closer to the real magnitude, immediately after an earthquake, the near-field and low-frequency information from the source are important and necessary.
Global Positioning System (GPS) takes advantage on the resolving power of low-frequency rupture behavior and overcomes the records clipping in the near-field, which is an ideal instrument for large earthquake. In order to calculate the focal mechanism, source location, and magnitude in a few seconds following an earthquake, this research builds a GPS-based focal mechanism inversion method for Taiwan. To test whether the model works properly, I test three local magnitudes ML >6 earthquakes occurred in 2013, Taiwan. Two earthquakes are of ML 6.2 and 6.5 occurred in Nantou County, in the central Taiwan with close epicentral locations within a distance about 8.5 km, namely the 0327 and 0602 earthquakes, respectively. Another earthquake occurred near Ruisui town, in the eastern Taiwan with ML 6.4, called the Ruisui earthquake. I also test two additional events for a larger occurred in 2002 of ML 6.8, called 331 earthquake; and the other occurred in 2003 of ML 6.4, called Chengkung earthquake. All the results showed good agreements with the results from GCMT and BATS, which evaluate the source parameters from dynamic wave information. Such success shows that GPS measurements alone can provide important information for inverting earthquake source model parameters.
關鍵字(中) ★ 全球衛星定位系統
★ 逆推
★ 震源機制
關鍵字(英) ★ GPS
★ inversion
★ focal mechanism
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 前人研究 1
1.3 研究動機 2
第二章 GPS資料處理 8
2.1 GPS發展簡介 8
2.2 GPS衛星定位系統架構 9
2.3 GPS定位原理 10
2.3.1 電碼虛擬距離(code pseudorange)觀測 10
2.3.2 載波相位(carrier phase)觀測 11
2.4 差分定位 12
2.4.1 一次差分 12
2.4.2 二次差分 13
2.5 絕對定位與相對定位 13
2.6 定位誤差 14
2.7 GPS資料解算 16
2.7.1 資料處理參數 18
2.7.2 動態定位後處理 19
2.8 同震位移計算 25
第三章 震源模型建立 29
3.1 地震震源與地表位移模型 29
3.2 永久位移模型 30
3.2.1 彈性半空間錯位模型(half-space dislocation model) 30
3.2.2 地震矩張量模型(moment tensor model) 31
3.3 地震矩張量逆推流程 34
3.4 模型測試 39
3.4.1 模型解析度分析 39
3.4.2 模型敏感度測試 40
3.5 情境地震震源機制解之逆推模擬 50
第四章 結果與討論 53
4.1 模型逆推結果 53
4.2 綜合討論 64
4.3 同震位移模型比較 66
4.4 其他地震事件測試 75
第五章 結論 82
參考文獻 84
附錄A 88
附錄B 100
附錄C 103
參考文獻 Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS solutions, 11(1), 71-76.
Aki, K., & Richards, P. G. (1980). Quantitative seismology: Theory and methods, 1. I: WH Freeman and Co.
Allen, R. M., & Ziv, A. (2011). Application of real time GPS to earthquake early warning. Geophysical research letters, 38, L16310.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of applied meteorology, 33(3), 379-386.
Blewitt, G., Hammond, W. C., Kreemer, C., Plag, H.-P., Stein, S., & Okal, E. (2009). GPS for real-time earthquake source determination and tsunami warning systems. Journal of Geodesy, 83(3-4), 335-343.
Borre, K., & Strang, G. (2012). Algorithms for global positioning: Wellesley-Cambridge Press.
Ching, K. E., Rau, R. J., & Zeng, Y. (2007). Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B6).
Choi, K., Bilich, A., Larson, K. M., & Axelrad, P. (2004). Modified sidereal filtering: Implications for high‐rate GPS positioning. Geophysical research letters, 31(22).
Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H., & Kuo, L. C. (2014). Active backthrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: evidence for a doubly‐vergent orogenic wedge? Geophysical research letters.
Chuang, R. Y., Johnson, K. M., Wu, Y. M., Ching, K. E., & Kuo, L. C. (2013). A midcrustal ramp‐fault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series. Geophysical research letters, 40(19), 5080-5084.
Crowell, B. W., Bock, Y., & Squibb, M. B. (2009). Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seismological Research Letters, 80(5), 772-782.
Dixon, T. (1991). AN INTRODUCTION TO THE GLOBAL POSITIONING SYSTEM AND SOME GEOLOGICAL APPLICATIONS. Reviews of Geophysics, 29, 249-276.
Dong, D., Fang, P., Bock, Y., Cheng, M., & Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS‐derived site position time series. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B4), ETG 9-1-ETG 9-16.
Dziewonski, A., Chou, T. A., & Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth (1978–2012), 86(B4), 2825-2852.
Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1-9.
Elósegui, P., Davis, J., Oberlander, D., Baena, R., & Ekström, G. (2006). Accuracy of high‐rate GPS for seismology. Geophysical research letters, 33(11).
Feigl, K. L., Agnew, D. C., Bock, Y., Dong, D., Donnellan, A., Hager, B. H., Herring, T. A., Jackson, D. D., Jordan, T. H., & King, R. W. (1993). Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B12), 21677-21712.
Ge, L., Han, S., Rizos, C., Ishikawa, Y., Hoshiba, M., Yoshida, Y., Izawa, M., Hashimoto, N., & Himori, S. (2000). GPS seismometers with up to 20 Hz sampling rate. Earth Planets and Space, 52(10), 881-884.
Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5), 1501-1523.
Genrich, J. F., & Bock, Y. (1992). Rapid resolution of crustal motion at short ranges with the Global Positioning System. Journal of Geophysical Research: Solid Earth (1978–2012), 97(B3), 3261-3269.
Gregorius, T. (1996). GIPSY-OASIS II: how it works. Department of Geomatics, University of Newcastle upon Tyne, 109.
Harris, R. A., & Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas fault. Journal of Geophysical Research: Solid Earth (1978–2012), 92(B8), 7945-7962.
Hsu, Y. J., Yu, S. B., & Chen, H. Y. (2009). Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake. Geophysical Journal International, 176(2), 420-430.
Ji, C., Larson, K. M., Tan, Y., Hudnut, K. W., & Choi, K. (2004). Slip history of the 2003 San Simeon earthquake constrained by combining 1‐Hz GPS, strong motion, and teleseismic data. Geophysical research letters, 31(17).
Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981-2987.
Larson, K. M. (2009). GPS seismology. Journal of Geodesy, 83(3-4), 227-233.
Larson, K. M., Bodin, P., & Gomberg, J. (2003). Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science, 300(5624), 1421-1424.
Lay, T., & Wallace, T. C. (1995). Modern global seismology (Vol. 58): Academic press.
Lee, Y. H., Chen, G. T., Rau, R. J., & Ching, K. E. (2008). Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B4).
Melbourne, T. I., & Webb, F. H. (2003). Slow but not quite silent. Science, 300(5627), 1886-1887.
Miyazaki, S. i., Larson, K. M., Choi, K., Hikima, K., Koketsu, K., Bodin, P., Haase, J., Emore, G., & Yamagiwa, A. (2004). Modeling the rupture process of the 2003 September 25 Tokachi‐Oki (Hokkaido) earthquake using 1‐Hz GPS data. Geophysical research letters, 31(21).
Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real‐time discriminants, finite‐fault rupture, and tsunami excitation. Geophysical research letters, 38(5).
Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System.
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.
Park, J., Song, T.-R. A., Tromp, J., Okal, E., Stein, S., Roult, G., Clevede, E., Laske, G., Kanamori, H., & Davis, P. (2005). Earth′s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science, 308(5725), 1139-1144.
Stein, S., & Okal, E. A. (2005). Seismology: Speed and size of the Sumatra earthquake. Nature, 434(7033), 581-582.
Suppasri, A., Futami, T., Tabuchi, S., & Imamura, F. (2012). Mapping of historical tsunamis in the Indian and Southwest Pacific Oceans. International Journal of Disaster Risk Reduction, 1, 62-71.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B8), 18057-18070.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
Yu, S.-B., Kuo, L.-C., Hsu, Y.-J., Su, H.-H., Liu, C.-C., Hou, C.-S., Lee, J.-F., Lai, T.-C., Liu, C.-C., & Liu, C.-L. (2001). Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 995-1012.
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619-627.
謝光紀. (2012). 高取樣率GPS定位精度分析: National Cheng Kung University Department of Earth Sciences.
指導教授 張午龍(Wu-Lung Chang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明