博碩士論文 101624005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:18.206.194.161
姓名 李欣融(Hsin Jung Lee)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 含水層下邊界對於斜井雙極水流試驗影響
(The effect from bottom boundary on dipole flow test in a slant well.)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 單井循環流水力實驗之理論改進與發展★ 地表下NAPL監測技術-薄膜擴散採樣器之發展
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 多深度微水試驗之測試段長度對水力傳導係數影響
★ 時間分數階徑向發散流場傳輸模式與單一裂隙示蹤劑試驗分析★ 大傾角裂隙岩層抽水試驗用雙孔隙率模式分析
★ 裂隙岩層的水流流通面積對跨孔雙封塞 微水試驗資料分析之影響★ 有效井管半徑模式與有限厚度模式對薄壁效應多深度微水試驗之比較
★ 非受壓含水層之三維斜井捕集區解析解★ 利用分布參數方法發展傾斜裂隙岩層 抽水試驗雙孔隙率模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統地下水調查及整治大多由垂直井進行,若遇到無法進行鑽設垂直井之情況時,可以一定傾角鑽設斜井深入含水層進行相關試驗。其中,雙極水流試驗可解決許多問題(如含水層水文地質參數推估、地下水流場變化、含水層下邊界之影響…等等)。當鑽設斜井時,若含水層厚度較薄,可打成全層貫穿井;但含水層厚度較厚,會造成全層貫穿井施工困難,且花費較高,因此本研究欲探討下邊界對於部分貫穿斜井雙極水流實驗之影響。由於雙極水流試驗是利用雙封塞系統將斜井隔離出上下等長之井篩段,下井篩段以定流率抽水,所抽的水在上井篩段以相同流率注入含水層,容易形成一穩態的循環流場,本研究推導穩態斜井雙極水流試驗模式,求得受壓與非受壓情況下含水層有限厚度與半無限厚度(不考慮下邊界)解。在受壓情形時,當下井篩段至下邊界距離超過0.36倍的含水層厚度,有限厚度模式與半無限厚度模式可完全吻合,可以忽略下邊界的影響。而非受壓情形時,由於不考慮時間變化,其地下水位面邊界條件為定水頭,其結果與受壓含水層相同,其傾角、井篩段長度以及兩井篩中點距離,皆不直接影響兩模式相符程度,因此不論受壓與非受壓,若要打成部分貫穿井,雙極水流試驗設置要使下井篩段至下邊界距離超過0.36倍的含水層厚度,就可忽略下邊界的影響。
摘要(英) In order to investigate and remediate the aquifer below a building, a slant well at the perimeter of the building is installed and reaches the target aquifer. While drilling slant well, the dipole flow test can measure many parameters more easily such as aquifer hydro geological parameters, estimation of groundwater flow field, bottom boundary of the aquifer, etc. If the aquifer is thin, drilling fully penetrating well will be successful. However, thick aquifer will make drilling entire fully penetrating well more difficult and costly. Therefore, this project wants to discuss the effect from bottom boundary on dipole flow test in a slant partially penetrating well. The slant well is isolated by using a double-packer into two screen sections of equal length. In the upper section, a constant rate pumping is carried out and the withdrawn water is immediately discharge into the lower section, which can create a steady circulation flow field. This study derives the slant well to conduct the dipole flow test in steady state model. It obtains the solution of finite thickness and semi-infinite thickness in confined and unconfined aquifer. In confined aquifer case, when the distance from the lower section to the lower boundary more than 0.36 times the thickness of the aquifer, the models same with limited thickness and semi-infinite thickness. The influence of the lower boundary can be ignored. In unconfined aquifer case, because it do not consider the time change, the water table boundary conditions for the constant head. The result is the same as confined aquifer.
關鍵字(中) ★ 斜井
★ 雙極水流試驗
關鍵字(英)
論文目次 摘 要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
符號說明 ix
第一章 緒論 1
1.1 背景 1
1.2 傾斜井與水平井之特性 1
1.3 雙極水流試驗 3
1.4 目的與方法 4
第二章 斜井雙極水流試驗數學模式 7
2.1 受壓含水層有限厚度模式 7
2.2 非受壓含水層有限厚度模式 16
2.3 受壓含水層半無限厚度模式 22
2.4 非受壓含水層半無限厚度模式 27
第三章 模式分析 32
3.1 井篩段至下邊界長度與含水層厚度比(βD)分析 32
3.2 斜井角度(γ)分析 33
3.3 兩井篩段中點距離(d)分析 38
3.4 井篩段長度(L)分析 38
第四章 結論與建議 43
4.1 結論 43
4.2 建議 43
參考文獻 44
附錄 模式驗證 49
A. 受壓含水層有限厚度模式驗證 49
B. 非受壓含水層有限厚度模式驗證 51
C. 含水層半無限厚度模式驗證 53
參考文獻 [1] Parmentier, P. P., and R. M. Klemovich, A new direction in remediation, Civ. Eng., 66, 55–57, 1996.
[2] Joshi, S. D., A review of horizontal well and drainhole technology, SPE Annual Technical Conference and Exhibition , 1987.
[3] Seines, K., S. C. Lieu, and B. T. Haug, Troll horizontal well tests demonstrate large production potential from thin oil zones, SPE Reservoir Eng., 9(2), 133– 139, 1994.
[4] Maurer, W. C., Recent advance/s in horizontal drilling, J. Can. Pet. Technol., 34, 25– 33, 1995.
[5] Penmatcha, V. R., S. Arbabi, and K. Aziz, Effect of pressure drop in horizontal wells and optimum well length, SPE Production Operations Symposium, 1997.
[6] Morgan, J. H., Horizontal drilling applications of petroleum technologies for environmental purposes, GroundWater Monit. Rev., 12(2), 98– 102, 1992.
[7] Environmental Protection Agency (EPA), Manual alternative methods for fluid delivery and recovery, EPA/625/R-94/003,Washington, D. C., 1994.
[8] Falta, R. W., Analytical solutions for gas-flow due to gas injection and extraction from horizontal wells, Ground Water, 33(2), 235–246, 1995.
[9] Sawyer, C. S., and K. K. Lieuallen– Dulam, Productivity comparison of horizontal and vertical ground water remediation well scenarios, Ground Water, 36(1), 98–103, 1998.
[10] Zhan, H., Analytical study of capture time to a horizontal well, J. Hydrol., 217, 46– 54, 1999.
[11] Zhan, H., and J. Cao, Analytical and semi-analytical solutions of horizontal well capture times under no-flow and constant-head boundaries, Adv. Water Resour., 23(8), 835–848, 2000.
[12] Hantush, M. S., and I. S. Papadopulos, Flow of ground water to collector wells, J. Hydraul. Div. Proc. Am. Soc. Civ. Eng., HY5, 221–244, 1962.
[13] Goode, P. A., and R. K. M. Thambynayagam, Pressure drawdown and buildup analysis of horizontal wells in anisotropic media, SPE Form. Eval., 2(4), 683–697, 1987.
[14] Daviau, F., G. Mouronval, G. Bourdarot, and P. Curutchet, Pressure analysis for horizontal wells, SPE Form. Eval., 3, 716– 724, 1988.
[15] Ozkan, E., R. Raghavan, and S. D. Joshi, Horizontal– well pressure analysis, SPE Form. Eval., 4, 567– 575, 1989.
[16] Kuchuk, F. J., P. A. Goode, D. J. Wilkinson, and R. K. M. Thambynayagam, Pressure transient behavior of horizontal wells with and without gas cap or aquifer, SPE Form. Eval., 6, 86– 94, 1991.
[17] Zhan, H., and V.A. Zlotnik, Groundwater flow to horizontal or slanted wells in unconfined aquifers, Water Resour. Res., 38(7), 1108, 2002.
[18] Butler, J.J., the Design, Performance, and Analysis of Slug Tests, Lewis Publishers, New York, 243PP, 1998.
[19] Zlotnik, V. A., and B. R. Zurbuchen, Dipole probe: design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity, Ground Water, 36(6), 884–893, 1998.
[20] Kabala, Z.J., The dipole flow test: A New single-borehole test for aquifer characterization, Water Resour. Res., 29(1), 99-107, 1993.
[21] Zlotnik, V., and G. Ledder, Theory of dipole flow in uniform anisotropic aquifers, Water Resour. Res., 32(4), 1119-1128, 1996.
[22] Kabala, Z.J., D.J. Sutton, and D.E. Schaad,2000. Mode deconvolution for the dipole-flow test with a tracer, International Conference on Tracers and Modelling in Hydrogeology, 66–70, 2000.
[23] Sutton, D.J., Z.J. Kabala, D.E., Schaad, and N.C. Ruud, The dipole-flow test with a tracer – a new single-borehole tracer test for aquifer characterization, J. Cont. Hydrol. 44, 71–101. , 2000.
[24] Zlotnik, V.A., B.R. Zurbuchen, T., Halihan, and T. Ptak, Steady state dipole flow test: summary of first ten years, Proceedings of the International Groundwater Symposium, 251–255. , 2002.
[25] Halihan. T., and V. A. Zlotnik., Asymmetric dipole-flow test in a fractured carbonate aquifer, Ground Water, 40(5), 491-499, 2002.
[26] Zlotnik V.A., D.E. Eisenhauer, D.J. Schlautman, B.R. Zurbuchen, and D.Van Peursem, Entrapped air effects on dipole flow test in sand tank experiments: Hydraulic conductivity and head distribution, J. Hydrol., 339, 193– 205, 2007.
[27] Neuman, S.P., Theory of flow in unconfined aquifers considering delayed response of water table, Water Resour. Res., 8(4), 1031– 1044, 1972.
[28] Kreyszing, E., Advanced Engineering Mathematics, John wiley and Sons, Inc., New York, 1093pp, 1998.
[29] Sneddon, I. N., The Use of Integral Transforms, McGraw-Hill, New York, 540pp, 1972.
[30] Churchill, R. V., Operational Mathematics, McGraw-hill, New York, 1972.
[31] Debnath L. and D. Bhatta, Integral Transforms and Their Applications, Chapman & Hall/CRC, 673pp, 2007.
[32] Gradshteyn and Ryzhik, Table of Integrals, Series, and Products, Elsevier Academic Press publications, 1172pp, 2007.
[33] Abramowitz M., and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, INC., New York, 1045pp, 1972.
[34] Moench, A. F., Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 33(6), 1397–1407, 1997.
指導教授 陳家洵 審核日期 2015-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明