博碩士論文 101624009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.87.61.215
姓名 吳繹平(Hyi-ping Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 大傾角裂隙岩層抽水試驗用雙孔隙率模式分析
(A Double-Porosity Model for Pumping Test in a Fractured Formation with a Large Dipping Angle)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 單井循環流水力實驗之理論改進與發展★ 地表下NAPL監測技術-薄膜擴散採樣器之發展
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 多深度微水試驗之測試段長度對水力傳導係數影響
★ 時間分數階徑向發散流場傳輸模式與單一裂隙示蹤劑試驗分析★ 含水層下邊界對於斜井雙極水流試驗影響
★ 裂隙岩層的水流流通面積對跨孔雙封塞 微水試驗資料分析之影響★ 有效井管半徑模式與有限厚度模式對薄壁效應多深度微水試驗之比較
★ 非受壓含水層之三維斜井捕集區解析解★ 利用分布參數方法發展傾斜裂隙岩層 抽水試驗雙孔隙率模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 新竹尖石裂隙含水層場址之井孔攝影顯示裂隙帶的傾角分布範圍從30度至60度。如此大的傾角會產生區域性水流,在裂隙帶中抽水試驗產生一非徑向流場;抽水井上、下游地下水壓力變化不一致,且會形成類似捕集區的效應。目前所有的抽水試驗模式中,均假設地層為水平,本研究想了解裂隙傾角對抽水試驗的影響,藉由進行雙封塞抽水試驗與建立具傾角影響之雙孔隙率模式來達成此目的。模式中雙孔隙率的部份採用集總參數的方法來模擬岩體母質與裂隙之間的水流互補機制。在新的模式中,透過經驗參數可預測裂隙傾角影響的極限值,小於此極限值的裂隙傾角可忽略,進行現地資料分析時直接使用水平裂隙模式即可,反之,需考慮傾角影響的情況下,抽水井、觀測井與裂隙之間的方位也需納入考量;模擬抽水試驗時,裂隙帶走向、抽水井與觀測井之間的位置若趨近於平行,與水平模式相比較,水平模式求得裂隙帶 Kf 值比具傾角影響的模式求得 Kf 值高估100倍左右,若趨近於正交方向時,則會高估10至20倍左右;此外,裂隙的傾角不會影響集總參數,因為裂隙中的壓力水頭依然為徑向分布,上下游分布不均為均勻流帶來的影響所致。本研究於103年1月3日至6日在新竹尖石裂隙含水層場址進行25小時的雙封塞抽水試驗,抽水率為每分鐘40公升,含水層的裂隙帶大致上由北向南傾30度,厚度為0.5米,觀測井位於抽水井東側5米,將現地資料帶入模式後亦得到理論分析的結果,本研究認為,在分析抽水試驗時,確實有必要考慮裂隙傾角產生的影響。
摘要(英) At the research well field of National Central University, the borehole camera images indict that the dip angle of the fractured zone can be as large as 30-60 degree. Such a large dip angle causes a regional flow in the fractured zone and renders the flow field of a pumping test to be radially asymmetric, where the pressure response in the down-gradient and up-gradient of the pumping well is different and a capture zone effect exists in the neighborhood of the pumping well. All the well hydraulics models currently available neglect the dip angle effect. To incorporate the dip angle effect, this project develops a new double-porosity pumping test model, where the matrix flow between the rock matrix and the fractured zone is modeled using the lumped-parameter approach. In the new model, according to the empirical parameters which can be used to predict the limit of the dip angle effect. The dip angle effect is negligible if the dip angle is less than the limit, the field data analysis can using the horizontal fracture model. Otherwise, in the effective situation, the position of the pumping well, observation well and fracture formation strike also need to be considered in. When modeling the pumping test, if observation well and pumping well that are located along the dip angle direction, the horizontal fracture model result of the hydraulic conductivity of the fracture K_f is larger 100 times than the dip angle effect fracture model. If observation well and pumping well that are located along the direction about orthogonal to the dip angle, then the K_f will larger 10-20 times than the dip angle effect fracture model. In addition, the dip angle does not affect the lumped parameter because the pressure head of the fractured zone is radial distribution, both upstream and downstream distribution is effect by the uniform flow only. A 25-hour constant-rate pumping test (40 l/ min) had been conducted from 2014/01/03 to 01/06 in the research well field. The dip angle is 30 degree for the fractured zone, running north to south. The thickness of the fracture zone is about 0.5 meters. The observation well locates about 5 meters from the pumping well. The field data analysis also confirms the theoretical analysis results of the dip angle effect. In this project, we think the dip angle is needed to consider during the pumping test.
關鍵字(中) ★ 雙孔隙率模式
★ 抽水試驗
★ 大傾角
關鍵字(英) ★ Double-Porosity Model
★ Pumping test
★ Dipping angle
論文目次 摘 要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vi
符號說明 vii
第一章 背景與研究目的 1
1.1 背景 1
1.2 研究動機與目的 6
第二章 具傾角影響之雙孔隙率模式 7
2.1 概念模型 9
2.2 數學模式的建立 9
2.3 模式的驗證與參考文獻的比較 16
第三章 雙封塞抽水試驗 22
3.1 現地場址調查 22
3.2 雙封塞抽水試驗流程 22
3.3 現地數據定性分析 25
第四章 模式與試驗的結果與討論 29
4.1 傾角對於模式的影響與分析 29
4.2 集總參數對於模式的影響與分析 35
4.3 模式與現地數據反求水文地質參數 38
第五章 結論與建議 45
5.1 結論 45
5.2 建議 46
參考文獻 47
附錄A、井邊邊界條件座標轉換 56
附錄B、Laplace-domain觀測井洩降變化大時間近似解 57
參考文獻 [1] Kazemi H., M. S. Seth, and G. W. Thomas, “The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution”, Soc. of Petrol. Engrs. J.,463-472, 1969.
[2] Boulton N. S. and T. D. Streltsova , “Unsteady flow to a pumped well in a fissured water-bearing formation”, Journal of Hydrology, 35, 257-269, 1977.
[3] Boulton N. S. and T. D. Streltsova-Adams, “Unsteady flow to a pumped well in an unconfined fissured aquifer”, Journal of Hydrology, 37, 349-363, 1978.
[4] Bourtdet D. and A. C. Gringarten, “Determination of fissure volume and block size in fractured reservoirs by type-curve analysis”, Paper SPE 9293 presented at the 1980 SPE Annual Fall Techn. Conf. and Exhib., Dallas, 1980.
[5] Van Golf-Raacht, Fundamentals of Fractured Reservoir Engineering, Elsevier, Amsterdam, 1982.
[6] Moench A. F., “Double-porosity models for a fissured groundwater reservoir with fracture skin”, Water Resources Research, 20(7), 831-846, 1984.
[7] Dougherty D. E. and D. K. Babu, “Flow to a partially penetrating well in a double-porosity reservoir”, Water Resources Research, 20(8), 1116-1122, 1984.
[8] Huntley D., R. Nommensen and D. Steffey , “The use of specific capacity to assess transmissivity in fractured-rock aquifers”, Ground Water, 30(3), 396-402, 1992.
[9] McConnell C. L., “Double porosity well testing in the fractured car- bonate rocks of the Ozarks”, Ground Water, 31, 75-83, 1993.
[10] Atkinson L. C., J. E. Gale and C. R. Dudgeon, “New insight into the step-drawdown test in fractured-rock aquifers”, Applied Hydrogeology, 1, 9-18, 1994.
[11] Gernand J. D. and J. P. Heidtman, “Detailed pumping test to characterize a fractured bedrock aquifer”, Ground Water, 35(4), 632-637, 1997.
[12] Lee J. Y. and K. K. Lee, “Analysis of the quality of parameter estimates from repeated pumping and slug tests in a fractured porous aquifer system in Wonju, Korea”, Ground Water, 37(5), 692-700, 1999.
[13] Tiedeman C. R. and P. A. Hsieh, “Assessing open-well aquifer test in fractured crystalline rock”, Ground Water, 39(1), 68-78, 2001.
[14] Tsoflias G. P., T. Halihan, and J. M. Sharp, “Monitoring pumping test response in a fractured aquifer using ground-penetrating radar”, Water Resources Research, 37(5), 1221-1229, 2001.
[15] Jourde H., F. Cornaton, S. Pistre and P. Bidaux, “Flow behavior in a dual fracture network”, Journal of Hydrology, 266, 99-119, 2002.
[16] Tonder G. V., I. Bardenhagen, K. Riemann, J. V. Bosch, P. Dzanga and Y. Xu, “Manual on pumping test analysis in fractured rock aquifers”, Water Research Commission Report, 1116, 2002.
[17] Cook P. G., “A guide to regional groundwater flow in fractured rock aquifers”, Seaview, West Lakes, Australia, 2003.
[18] Cho H. J., R. J. Fiacco and M. H. Daly, “Pumping test analysis in a fractured crystalline bedrock”, Environmental Resources Management Resport, 2004.
[19] Le Borgne T., O. Bour, J. R. de Dreuzy, P. Davy and F. Touchard , “Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation”, Water Resources Research, 40(3), W03512, 2004.
[20] Maréchal J. C. and B. Dewandel, “Use of hydraulic tests at different scales to characterize fracture network properties in the weathered fractured layer of a hard rock aquifer”, Water Resources Research, 40, W11508, 2004.
[21] Van Tonder and P. D. Vermeulen, “The applicability of slug tests in fractured-rock formations”, Water SA, 31(2), 157-160, 2005.
[22] Le Borgne T., O. Bour, F. L. Paillet and J. P. Caudal, “Assessment of preferential flow path connectivity and hydraulic properties at single borehole and cross-borehole scales in a fractured aquifer”, Journal of Hydrology, 328(1-2), 347-359, 2006.
[23] Wen Z., G. Huang and H. Zhan, “Non-Darcian flow in a single confined vertical fracture toward a well”, Journal of Hydrology, 330, 698-708, 2006.
[24] Delay F., A. Kaczmaryk and P. Ackerer, “Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media”, Advances in Water Resources, 30(3), 314-334, 2007.
[25] Cello P. A., D. D. Walker, A. J. Valocchi and B. Loftis, “Flow dimension and anomalous diffusion of aquifer tests in fracture networks”, Vadoes Zone Journal, 8(1), 258-268, 2009.
[26] Schweisinger T., E. J. Svenson and L. C. Murdoch, “Introduction to hydromechanical well tests in fractured rock aquifers”, Ground Water, 47(1), 69-79, 2009.
[27] Maréchal J. C., J. M. Vouillamoz, M. S. Mohan Kumar and B. Dewandel, “Estimating aquifer thickness using multiple pumping tests”, Hydrogeology Journal, 18(24), 1787-1796, 2010.
[28] Delay F., P. Ackerer and A. Guadagnini, “Theoretical analysis and field evidence of reciprocity gaps during interference pumping tests”, Advances in Water Resources, 34(5), 592-606, 2011.
[29] Schweisinger T., E. J. Svenson, and L. C. Murdoch, “Hydromechanical behavior during constant rate pumping tests in fractured gneiss”, Hydrogrological Journal, 19, 963-980, 2011.
[30] Quinn P., J. A. Cherry and B. L. Parker, “Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes”, Hydrogeology Journal, 20, 1529-1547, 2012.
[31] Muskat M., The flow of homogeneous fluids through porous media, New York:McGraw-Hill, 1937.
[32] Barenblatt, G. I., Y. P. Zheltov and I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Journal Applied Mathematics and Mechanics, 24(5), 1286-1303, 1960.
[33] Dontsov, K. M., and V. T. Boyarchuck, “Effect of characteristicsof a naturally fractured medium upon the shape of buildup curves”, Izvestiya Vysshikh Uchebnykh Zavedenii, Neft Gaz, 1, 42-46, 1971.
[34] de Swaan O. A., “Analytic solutions for determining naturally fractured reservoir properties by well testing ”, Society of Petroleum Engineers journal, 16, 117-122, 1976.
[35] Najurieta, H. L., “A theory for pressure transient analysis in naturally fractured reservoirs”, Journal of Petroleum Technology, 32, 1241-1250, 1980.
[36] Serra, K., A. C. Reynolds, and R. Raghavan, “New pressure transient analysis methods for naturally fractured reservoirs ”, Journal of Petroleum Technology, 35, 1902-1914, 1983.
[37] Streltsova, T. D., “Well pressure behavior of a naturally fractured reservoir”, Society of Petroleum Engineers journal, 23, 769-780, 1983.
[38] Gringarten, A. C., “Interpretation of tests in fissured and multilayered reservoirs with double-porosity behavior:Theory and practice ”, Journal of Petroleum Technology, 36, 549-564, 1984.
[39] Luthin J. N. and J. C. Guitjens, “Transient solutions for drainage of sloping land”, ASCE J.Irrig. Drain. Div., 93(IR3): 43-51, 1967.
[40] Chauhan H. S., G. O. Schwab and M. Y. Hamdy, “Analytical and computer solutions of transient water table of drainage of sloping land”, Water Resources Research, 4(3), 573-579, 1968.
[41] Chapman T. G., “Modeling groundwater flow over sloping beds”, Water Resources Research, 16(6), 1114-1118, 1980.
[42] Ram S. and H. S. Chauhan, “Analytical and experimental solutions for drainage of sloping lands with time-varying recharge”, Water Resources Research, 23, 1090-1096, 1987.
[43] Singh R. N., S. N. Rai and D. V. Ramana, “Water table fluctuation in a sloping aquifer with transient recharge”, Journal of Hydrology, 126, 315-326, 1991.
[44] Brutsaert W., “The unit response of groundwater outflow from a hillslope”, Water Resources Research, 30(10), 2759-2763, 1994.
[45] Ramana D. V., S. N. Rai and R. N. Singh, “Water table fluctuationdue to transient recharge in a 2-D aquifer system with inclinedbase”, Water Resources Manage, 9, 127-138, 1995.
[46] Srivastava K., S. N. Rai and R. N. Singh, “Water-table variation in a sloping aquifer due to random recharge”, Water Resources Manage, 10, 241-250, 1996.
[47] Koussis A. D., M. E. Smith, E. Akylas and M. Tombrou, “Groundwater drainage flow in a soil layer resting on an inclined leaky bed”, Water Resources Research, 34(11), 2879-2887, 1998.
[48] Shukla K. N., H. S. Chauhan and V. K. Srivastava, “Transient drainage to partially penetrating drains in sloping aquifers”, Journal of Irrigation and Drainage Engineering, 246- 253, 1999.
[49] Stagnitti F., L. Li, J. Y. Parlange, W. Brutsaert, D. A. Lockington, T. S. Steenhuis, M. B. Parlange, D. A. Barry and W. L. Hogarth, “Drying front in a sloping aquifer: Nonlinear effects”, Water Resources Research, 40, W04601, 2004.
[50] Akylas E., A. D. Koussis and A. N. Yannacopoulos, “Analytical solution of transient flow in a sloping soil layer with recharge”, Hydrological Sciences Journal, 51(4) , 626-641, 2006.
[51] Chang Y. C. and H. D. Yeh, “Analytical solution for groundwater flow in an anisotropic sloping aquifer with arbitrarily located multiwells”, Journal of Hydrology, 347, 143-152, 2007.
[52] Streltsova T. D., Well Testing in Heterogeneous Formations, Wiley, 413pp, 1988.
[53] Boussinesq, J., “Essai sur la théorie des eaux courantes. Mém. présentés divers savants”, Acad. Sci. Inst. France, 23, 1-680, 1877.
[54] Kreyszig, E., Advanced Engineering Mathematics, 8th Edition, John Wiley and Sons, Inc., New York, Oct. 23, 1998.
[55] Abramowitz M., and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, INC., New York, 1045pp, 1972.
[56] de Hoog, F. R., J. H. Knight and A. N. Stokes, “An improved method for numerical inversion of Laplace transforms”, SIAM. J. Sci. and Stat. Comput., 3(3), 357-366, 1982.
[57] Barrash, W. and D. R. Ralston, “Analytical modeling of a fracture zone in the Brule Formation as an aquifer receiving leakage from water-table and elastic aquitards”, Journal of Hydrology, 125,1-24, 1991.
[58] Oberhettinger F., and L. Badii, Tables of Laplace Transforms, Springer-Verlag Berlin Heidelberg, 444pp, 1973.
指導教授 陳家洵 審核日期 2015-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明