博碩士論文 101624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:44.210.21.70
姓名 陳慶芳(Ching-fang Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 結合水質空間變異分析與地下水流動模式規劃屏東平原地下水及地表水使用管理
(Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain.)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 屏東平原地下水蘊藏量極為豐富,多年以來大量地下水供應於民生、農業及養殖用水,但由於缺乏地下水資源永續利用的概念,導致本地區超抽地下水,進而造成地層下陷和海水入侵及地下水鹽化問題日益嚴重,因此管理及保育地下水資源已成為該地區很相當重要的課題。本研究目的是整合地下水水質與水位變化條件,當屏東平原有足夠地表水源時,針對飲用、養殖及灌溉等用水標的之地下水優先停止抽用的區域規劃。首先水質部分利用多變量指標克利金法分析飲用水、養殖及灌溉用水水質空間變異,並以機率劃定適合與不適合飲用、養殖及灌溉之地區;地下水位變化部分以模組化地下水流模式PROCESSING MODFLOW(PMWIN)進行屏東平原地下水流動及補注水量的模擬,配合均方根誤差(RMSE)率定模式,以求出符合現地水文地質架構之模型。接著使用水權核發量作為模式補注量,模擬含水層補注地下水位變化,模式補注時間為半年,以回注水權方式當作停止抽用地下水,將地下水位排序結果結合水質空間變異排序結果,用以檢核地表水管理規劃之可行性。結果顯示南州為養殖用水量與水質條件為全區域較差,故排序最前,接著依序為新埤、佳冬、潮州、枋寮等地。再來灌溉用水量與水質條件全區域較差地區為枋寮,然後依序為佳冬、新埤、萬巒、南州等地。最後是飲用水量與水質條件全區域較差地區為新埤,依序為潮州、萬巒、大樹、長治,以上鄉鎮區建議依照使用目的以地表水代替地下水使用,以減輕對含水層的負擔。
摘要(英) The groundwater is very rich in the Pingtung plain and a main water supply source for drinking, irrigation and aquaculture demands. However, because the concept of sustainable use of groundwater resources is weak, excessive pumping of groundwater is common in this area, resulting in the occurrence of increasingly serious the problems in land subsidence and sea water intrusion. Therefore, management and conservation of groundwater resources in the Pingtung plain have become a very important issue. This study aims to conjunct use of groundwater and surface water in the Pingtung plain based on water quality and quantity, and assess the locations of the suitable decreasing groundwater extraction. The study results could establish a management and development plan of low-impact groundwater resources for the multi-purposes, and prevent decreasing groundwater tables and the occurrence of the land subsidence and sea water intrusion in the Pingtung plain. This study carried out the simulation of groundwater flow using MODFLOW in the Pingtung plain after model. After model calibration, the developed groundwater flow model can be used to predict the variation of groundwater flow for specified situations. The research findings can provide a plan reference of regional water resources supplies for government administrators and reach the sustainability of water resources development.
關鍵字(中) ★ 地下水
★ 三維地下水流動模式
★ 多變量指標克利金
★ 補注
關鍵字(英) ★ Groundwater
★ MODFLOW
★ MVIK
★ Recharge
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 ix
符號說明 xi
第一章 諸論 1
1-1 前言 1
1-2 文獻回顧 6
1-2-1 地下水水質之環境議題 6
1-2-2 地下水水量之環境規劃 9
1-2-3 地下水水質及地下水水量聯合運用 10
1-3 研究目的 13
1-4 研究流程 14
第二章 研究區域概況 15
2-1 地理位置與環境概述 15
2-2 地層下陷及海水入侵現況 19
2-3 各標的用水狀況 24
2-4 地層 26
2-4-1 固結岩層 26
2-4-2 未固結岩層 27
2-5 氣象 32
2-6 流域概述 34
2-7 水文地質分層 36
第三章 研究方法 41
3-1 MODFLOW模式 41
3-1-1 MODFLOW模式簡介 41
3-1-2 地下水流控制方程式 42
3-1-3 邊界條件簡介 45
3-2 水文地質統計與多變量分析 47
3-2-1 空間變異分析 48
3-2-2 多變量指標克利金法 50
3-3 水質標準 54
3-3-1 養殖用水水質標準 54
3-3-2 灌溉用水水質標準 57
3-3-3 飲用水水質標準 59
3-4 數值模式建構 60
3-4-1 模式分層 60
3-4-2 網格劃分與邊界條件 61
3-4-3 水文地質參數設定 63
3-4-4 率定模式 64
第四章 結果與討論 72
4-1 各標的水質指標變數之空間機率分布結果 72
4-1-1 水質資料與水質標準資料 72
4-1-2 水質機率與水質標準之統計 106
4-2 MODFLOW模式率定 112
4-3 鄉鎮之地下水補注 118
4-3-1 補注量設定 118
4-3-2 補注結果 118
4-4 地下水水質與水量整合之結果 125
第五章 結論與建議 132
5-1 結論 132
5-2 建議 134
參考文獻 135
附錄一 144
參考文獻 1. 經濟部水資源統一規劃委員會(1995)臺灣地區之水資源,經濟部水利署,台北市。
2. 汪中和、張慈君、劉文徹、劉聰桂(1997年5月)屏東地區的同位素水文變化,長期水資源預測研討會論文彙編,119-131頁,國立台灣大學,台北市。
3. 徐鐵良(1961)臺灣南部屏東各地之自升地下水系,中國地質學會會刊,第4卷,73-81頁。
4. 吳銘志、鄭鉅霖(1997年1月)屏東沖積平原內自流井之分布及其賦存層之地層組構,第二屆地下水資源及水質保護研討會論文集,947-954頁,國立成功大學,台南市。
5. 江崇榮、汪中和(1998年3月)屏東平原地下水區之海水入侵,屏東平原地下水及水文地質研討會論文集,297-315頁,國立臺灣大學,台北市。
6. 江崇榮(2000)屏東平原地下水之海水入侵,經濟部中央地質調查所彙刊,第13號,25-50頁。
7. 陳文福、蔡克敏、張國強、黃顯凱、郭純蓉(2001年4月)屏東地下水鹽化之監測,第四屆地下水資源及水質保護研討會論文集,187-190頁,國立屏東科技大學,屏東縣。
8. Jones, F. T. (2007). A broad view of arsenic. Poultry Science, 86(1), 2-14.
9. Petroczi, A., Naughton, D. (2009). Mercury, cadmium and lead contamination in seafood: A comparative study to evaluate the usefulness of Target Hazard Quotients. Food and Chemical Toxicology, 47(2), 298-302.
10. Smedley, P. L., Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568.
11. Ravenscroft, P. (2007a). Predicting the global distribution of natural arsenic contamination of groundwater. In Symposium on Arsenic: the geography of a global problem, Royal Geographical Society, London, 29th August. http://www.geog.cam.ac.uk/research/projects/arsenic/symposium/S1.2_P_Ravenscroft.pdf
12. Panaullah, G. M., Alam, T., Hossain, M. B., Loeppert, R. H., Lauren, J. G., Meisner, C. A., Ahmed, Z. U., Duxbury, J. M. (2009). Arsenic toxicity to rice (Oryza sativa L). in Bangladesh. Plant and Soil, 317(1-2), 31-39.
13. Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J. Valko, M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95-107.
14. 世界衛生組織(WTO):http://www.who.int/zh/。
15. 國際癌症機構(IARC):http://www.iarc.fr/
16. Chan, T. Y. (1996). Food-borne nitrates and nitrites as a cause of methemoglobinemia. The Southeast Asian Journal of Tropical Medicine and Public Health, 27(1), 189-192.
17. Knobeloch, L., Salna, B., Hogan, A., Postle, J., Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675.
18. Benefield, L. D., Judkins, J. F., Weand, B. L. (1982). Process chemistry for water and wastewater treatment. Prentice Hall Inc, Englewood Cliffs, New Jersey.
19. Khanitchaidecha, W., Shakya, M., Nakano, Y., Tanaka, Y., Kazama, F. (2012). Development of an attached growth reactor for NH4–N removal at a drinking water supply system in Kathmandu Valley, Nepal. Journal of Environmental Science and Health, Part A, 47(5), 734-743.
20. Allan, G. L., Maguire, G. B. (1995). Effect of sediment on growth and acute ammonia toxicity for the school prawn, Metapenaeus macleayi (Haswell). Aquaculture, 131(1), 59-71.
21. Adamsson, M., Dave, G., Forsberg, L., Guterstam, B. (1998). Toxicity identification evaluation of ammonia, nitrite and heavy metals at the Stensund Wastewater Aquaculture plant, Sweden. Water Science and Technology, 38(3), 151-157.
22. El-Shafai, S. A., El-Gohary, F. A., Nasr, F. A., van der Steen, N. P., Gijzen, H. J. (2004). Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture, 232(1), 117-127.
23. 國家毒物研究中心:http://nehrc.nhri.org.tw/toxic/
24. Zabin, S. A., Foaad, M. A., Al-Ghamdi, A. Y. (2008). Non-carcinogenic risk assessment of heavy metals and fluoride in some water wells in the Al-Baha Region, Saudi Arabia. Human and Ecological Risk Assessment, 14(6), 1306-1317.
25. Frisbie, S. H., Mitchell, E. J., Dustin, H., Maynard, D. M., Sarkar, B. (2012). World Health Organization discontinues its drinking-water guideline for manganese. Environmental Health Perspectives, 120(6), 775.
26. Barlow, P. J. (1983). A pilot study on the metal levels in the hair of hyperactive children. Medical Hypotheses, 11(3), 309-318.
27. Ericson, J. E., Crinella, F. M., Clarke-Stewart, K. A., Allhusen, V. D., Chan, T., Robertson, R. T. (2007). Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicology and Teratology, 29(2), 181-187.
28. Yousef, S., Adem, A., Zoubeidi, T., Kosanovic, M., Mabrouk, A. A., Eapen, V. (2011). Attention deficit hyperactivity disorder and environmental toxic metal exposure in the United Arab Emirates. Journal of Tropical Pediatrics, 57(6), 457-460.
29. Lucchini, R. G., Martin, C. J., Doney, B. C. (2009). From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. Neuromolecular Medicine, 11(4), 311-321.
30. Spangler, J. G., Reid, J. C. (2010). Environmental manganese and cancer mortality rates by county in North Carolina: an ecological study. Biological Trace Element Research, 133(2), 128-135.
31. Yevtushenko, N. Y. (1998). Accumulation of microelements in organs and tissues of fishes differing in feeding specialization under conditions of cultivation in fishponds with heated water. Hydrobiological Journal, 34(4-5).
32. Kraivazoglou, N. A., Papakosta, D. K., Divanidis, S. (2005). Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Research, 92(1), 61-74.
33. Grieve, C. M., Poss, J. A., Amrhein, C. (2006). Response of Matthiola incana to irrigation with saline wastewaters. HortScience, 41(1), 119-123.
34. Madoni, P., Davoli, D., Gorbi, G., Vescovi, L. (1996). Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 30(1), 135-141.
35. Gaballah, I., Kilbertus, G. (1998). Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. Journal of Geochemical Exploration, 62(1), 241-286.
36. Bailey, S. E., Olin, T. J., Bricka, R. M., Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469-2479.
37. Iqbal, M., Saeed, A., Akhtar, N. (2002). Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresource Technology, 81(2), 151-153.
38. Henn, B. C., Schnaas, L., Ettinger, A. S., Schwartz, J., Lamadrid-Figueroa, H., Hernández-Avila, M., Amarasiriwardena, C., Hu, H., Bellinger, D. C., Wright, R. O., Téllez-Rojo, M. M. (2012). Associations of early childhood manganese and lead coexposure with neurodevelopment. Environmental Health Perspectives, 120(1), 126.
39. 李金靖(2008)蘭陽平原地下水砷之地化特徵及健康風險評估,國立臺灣大學生物環境系統工程學研究所碩士班學位論文。
40. Smith, J. L., Halvorson, J. J., Papendick, R. I. (1993). Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal, 57(3), 743-749.
41. Oyedele, D. J., Amusan, A. A., Olu Obi, A. (1996). The use of multiple-variable indicator kriging technique for the assessment of the suitability of an acid soil for maize. Tropical Agriculture, 73(4), 259-263.
42. Diodato, N., Ceccarelli, M. (2004). Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecological Indicators, 4(3), 177-187.
43. Jang, C. S., Chen, S. K., Ching‐Chieh, L. (2008). Using multiple‐variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrological Processes, 22(22), 4477-4489.
44. Lin, Y. P., Cheng, B. Y., Shyu, G. S., Chang, T. K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan. Environmental Pollution, 158(1), 235-244.
45. Chu, H. J., Lin, Y. P., Jang, C. S., Chang, T. K. (2010). Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling. Geoderma, 158(3), 242-251.
46. Jang, C. S. (2013). Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation. Environmental Monitoring and Assessment, 185(5), 4049-4061.
47. 經濟部水利署網址:http://www.wra.gov.tw/default.asp。
48. Harbaugh, A.W., McDonald, M.G., (1996). Programmer documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite- difference-groundwater flow model. USGS Open-File Report, 96-486.
49. Rejani, R., Jha, M. K., Panda, S. N. (2009). Simulation-optimization modelling for sustainable groundwater management in a coastal basin of Orissa, India. Water Resources Management, 23(2), 235-263.
50. Bedekar, V., Niswonger, R. G., Kipp, K., Panday, S., Tonkin, M. (2012). Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW. Ground Water, 50(2), 187-198.
51. Al-Salamah, I. S., Ghazaw, Y. M., Ghumman, A. R. (2011). Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. Environmental Monitoring and Assessment, 173(1-4), 851-860.
52. 陳忠偉(2002)濁水溪沖積扇合適水位與海水入侵之研究,國立成功大學資源工程學系博士班學位論文。
53. 楊亞欣(2013)濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析,國立成功大學資源工程學研究所碩士班學位論文。
54. Jang, C. S., Liu, C. W. (2004). Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Hydrological Processes, 18(7), 1333-1350.
55. Di Matteo, L., Dragoni, W. (2005). Empirical relationships for estimating stream depletion by a well pumping near a gaining stream. Ground Water, 43(2), 242-249.
56. Purjenaie, A., Moradi, M., Noruzi, A., Majidi, A. (2012). Prediction of Aquifer Drawdown Using MODFLOW Mathematical Model (Case Study: Sarze Rezvan Plain, Iran). Geosciences, 2(5), 112-116.
57. Li, F., Feng, P., Zhang, W., Zhang, T. (2013). An Integrated Groundwater Management Mode Based on Control Indexes of Groundwater Quantity and Level. Water Resources Management, 27(9), 3273-3292.
58. 土木科技研究發展文教基金會(1998)地層下陷防治推動綜合計畫子計畫三:屏東平原地層下陷區安全出水量估算與應用,經濟部水資源局,台北市。
59. 張良正、蔡威平、陳宇文(1999年1月)屏東平原地下水補注量推估及分級,第三屆地下水資源及水質保護研討會論文集,65-76頁,國立中央大學,桃園縣。
60. 潘文健(2002)屏東平原合適出水量分析之研究,國立成功大學資源工程學研究所碩士班學位論文。
61. 丁澈士、鄒禕、黃信恩(2003)地下水資源最佳化管理模式之研究-地下水人工補注之可行性評估,國科會工程科技通訊,第 66 期,62-67頁。
62. 蔡承恩(2004)屏東平原自升水系-分布區域調查與出水量潛能分析,國立屏東科技大學土木工程系碩士班學位論文。
63. 鄭遠、李振誥、陳美惠、葉信富(2006)屏東隘寮圳灌區最佳分水率之探討,農業工程學報,52(1),13-23頁。
64. Tu, Y. C., Tsai, H. T., Ting, C. S. (2009). The evaluation of groundwater environmental restoration by artificial recharge in Pingtung Plain, Taiwan. A-A, 8th IAHS Scientfic Assembly and 37th IAH Congress, Hyderabad, India, 250-255.
65. 李品醇(2011)利用廢棄土地於屏東平原進行地下水補注之可行性研究,國立屏東科技大學土木工程系所碩士班學位論文。
66. Jang, C. S., Chen, S. K., Kuo, Y. M. (2012). Establishing an irrigation management plan of sustainable groundwater based on spatial variability of water quality and quantity. Journal of Hydrology, 414, 201-210.
67. Jang, C. S., Liu, C. W., Chou, Y. L. (2012). Assessment of groundwater emergency utilization in Taipei Basin during drought. Journal of Hydrology, 414, 405-412.
68. 王煒傑(2011)結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域,國立中央大學應用地質研究所碩士班學位論文。
69. 中央地質調查所(2002)台灣地區地下水觀測網第一期計畫-屏東平原水文地質調查研究總報告,經濟部中央地質調查所,新北市。
70. 工業技術研究院資訊網:http://www.erl.itri.org.tw/mineral/min_core_b02.html。
71. 陳文福(2005)台灣的地下水,遠足文化出版,台北市。
72. 經濟部水資源局(2000)屏東平原地下水資源之研究,經濟部水資源局,台北市。
73. 國立成功大學水工試驗所(2001)台灣地下水資源圖說明書,經濟部水利署,台北市。
74. 中央氣象局氣象資料:http://www.cwb.gov.tw/V7/index.htm。
75. 江崇榮、王俊華(1994)屏東平原水文地質圖,經濟部中央地質調查所,新北市。
76. 江崇榮、陳瑞娥(2004)地下水水源保護區劃定之芻議,經濟部中央地質調查所彙刊卷期,17卷,1-19頁。
77. Chiang, W. H., Kinzelbach, W. (2001). 3D-Groundwater Modeling with PMWIN. A simulation program for modelling groundwater flow and pollution. Springer-Verleg, Berlin.
78. 行政院環境保護署網址:http://www.epa.gov.tw
79. 行政院農業委員會:http://www.coa.gov.tw/show_index.php
80. 經濟部中央地質調查所(1997)台灣地區地下水觀測網第一期計畫八十四及八十五年屏東平原水文地質研究總報告,經濟部水資源局,台北市。
81. Domenico, P. A. (1972). Concepts and models in groundwater hydrology. McGraw-Hill, New York.
82. Deutsch, C. V., Journel, A. G. (1998). GSLIB Geostatistical software library and users guide. Oxford University Press, New York.
指導教授 陳瑞昇、張誠信(Jui-sheng Chen Cheng-shin Jang) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明