博碩士論文 101626010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.227.231
姓名 賴加晉(Chia-Chin Lai)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 動態接觸角觀測及其模式探討
(Observation of Dynamic Contact Angle and Its Model)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 孔隙介質多相流在地表下的流體傳輸過程中扮演重要的角色,毛細壓力是影響孔隙介質多相流的重要驅動力之一。而接觸角是影響毛細壓力重要的物理量。相關研究顯示,流體流動過程中接觸角會隨著毛細數(capillary number)的不同產生變化。現今,尚未有方法可直接觀測地表下動態孔隙介質流體流動情形,將地下複雜孔隙幾何圖形簡化成微模型圖案並進行注流實驗,是目前觀測動態孔隙介質流的方法之一。本研究藉由高透光性的微模型觀察流體在管道內的變化。
本研究選用PDMS(聚二甲基矽氧烷)片材當作製作微模型的材料。利用微影製程製作矽晶片當作母模,使用PDMS片材翻印母模,讓片材表面留下孔道可供流體流動。本研究用的微模型是 0.1 mm * 0.2 mm的方管孔隙介質幾何圖案。透過高速相機記錄微模型內流體的流動過程,及影像分析軟體量測影像中接觸角隨流速不同的變化。隨著注入流速增加,接觸角都有變大的趨勢。與以往研究結果不同的是隨著流速加大,本研究測得的動態接觸角相關參數α,β並非定值。並將實驗得到的動態接觸角及相關參數α,β修正過往以靜態接觸角為參數的PDM模式,比較修正後的模式結果。
摘要(英) Porous media multi-phase flow plays an important role in the fluid transport process in the subsurface. One of the important driving forces of porous media multi-phase flow is capillary pressure,and the contact angle is one of the important parameter. Related researches show that when fluid flows, contact angle varies depending on different capillary numbers. Up to date, there is no method for direct observation of the flow of porous media fluid underground. The micromodel is one of the mainly used for injection experimental as an tool Highly transparent micromodel is required to observe changes of fluid in tunnels.
This research uses PDMS (polydimehtylsiloxane) sheets as material for the micro-model. Wafer produced by photolithography acts as the substrate. The sheet is laminated with the substrate, leaving tunnels on the surface of the sheet for fluid to flow through. The micro-models used for this research are of two porous media geometric patterns: A. 0.1 mm * 0.2 mm cubic tube. The flow of the fluid in the micro-model is recorded with high speed camera, and the change of the contact angle with respect to flow rate in the images is analyzed by an image analyzing program. Different from the previous results, the dynamic contact angle related parameters α and β measured in this study are not definite as the flow velocity increases. The modified contact angle and the relative parameters α, β are used to modify the PDM model with the static contact angle as the parameter, and the modified model results are compared.
關鍵字(中) ★ 動態接觸角 關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的 3
1.3. 文獻回顧及相關理論 3
1.3.1. 接觸角介紹 3
1.3.2. 微模型製作回顧 5
1.3.3. 前人的動態接觸角實驗 9
1.3.4. 管流方程式: 帕穗定律(Poiseuille’s law equation) 9
1.3.5. PDM(Pore Doublets Model)模式 10
1.4. 論文架構 12
1.4.1. 微模型製作 12
1.4.2. 注流過程 12
1.4.3. 影像分析 12
1.4.4. 實驗結果討論與結論 13
第二章 研究理論及方法 14
2.1. 微模型材料 15
2.2. 微模型製作 15
2.3. 微影製程步驟介紹 18
2.3.1. 晶圓清洗(Wafer cleaning)。 18
2.3.2. 烘烤(Dehydation Bake) 18
2.3.3. SU-8光阻塗佈(Spin Coating) 19
2.3.4. 軟烤(Soft Bake) 20
2.3.5. 曝光(Exposure) 21
2.3.6. 顯影(Develop) 22
2.3.7. 硬烤(Hard Bake) 22
2.3.8. PDMS片材翻印 23
2.4. 注流實驗介紹 24
2.4.1. 注流儀器、工具及流體 24
2.5. 視覺化儀器 25
2.6. 實驗流程 28
2.7. 影像分析方法 29
2.7.1. 影像分析步驟 30
第三章 實驗結果與討論 34
3.1. 實驗數據 34
3.2. 數據分析與討論 37
3.2.1. 接觸角實驗數據分析 37
3.2.2. 分析結果帶入PDM模式討論 39
第四章 討論與結論 45
4.1. 討論與結論 45
4.2. 建議 45
參考文獻 47


參考文獻 1. Weitz, D. A., J. P. Stokes, R. C. Ball, and A. P. Kushnick (1987),
Dynamic capillary pressure in porous media: Origin of the
viscous-fingering length scale, Phys. Rev. Lett., 59, 2967–
2970, doi:10.1103/PhysRevLett.59.2967.
2. Geiger, S. L., and D. S. Durnford (2000), Infiltration in
homogeneous sands and a mechanistic model of unstable flow, Soil
Sci. Soc. Am. J., 64(2), 460–469,
doi:10.2136/sssaj2000.642460x.
3. Rose, W. , and Heins, R. W. ,J. Colloid Chem.,17, 39 (1962)
4. Hoffman, R. L. (1975), A study of the advancing interface. I.
Interface shape in liquid—gas systems, Journal of Colloid and
Interface Science, 50(2), 228–241, doi:10.1016/0021-
9797(75)90225-8.
5. de Gennes PG. 1985. Wetting: statics and dynamics. Rev. Mod.
Phys. 57:827–63
6. Cox RG. 1986. The dynamics of the spreading of liquids on a solid
surface. Part 1. Viscous flow. J. Fluid Mech. 168:169–94
7. M. Bracke, F. De Voeght, P. Joos, The kinetics of wetting: the
dynamic contact angle. progr. Colloid pol. Sci. 79, 142-149
(1989)
8. Bera, B., Gunda, N. S., Karadimitriou, N. K., Mitra, S.,
Hassanizadeh, S. M., (2011), Fabrication of glass micro-model
to perform multi-phase flow in a pore network structure,
Conference Proceedings of the “ASME –JASME– KSME Joint
Fluids Engineering Conference 2011”, Hamamatsu, Japan.
9. Hsu, S.-Y., and M.Hilpert(2011),Incorporation of dynamic
capillary pressure into the Green-Ampt model for
infiltration,Vadose Zone J.,10,642–653.
10. Green, W.H., and G. Ampt. 1911. Studies on soil physics: 1.
Th e fl ow of air and water through soils. J. Agric. Sci. 4:1–
24
11. Chatenever, A., and J. C. Calhoun, Visual examinations of fluid
behaviorin porous media, I, Trans. Am. Inst. Min. Metall. Pet.
48
Eng.,AIME, 195, 149-156, 1952.
12. Thompson,J.D., Higgins,D.G. & Gibson,T.J. (1994). CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice.Nuc. Ac. Res.22, 4673-4680.
13. C. C. Mattax and J. R. Kyte, Ever see a water flood?, Oil Gas
J. 59 115-128 (1961)
14. M.Y.C. and P.F. , Glass bead micromodel study of solute
transport. 1999.
15. Cheng, J.-T. (2002), Fluid flow in ultrasmall structures, Ph.D.
thesis,Purdue Univ., West Lafayette, Indiana
16. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>
17. C.E.Baver Dynamic contact angles and wetting front instability
in soils.2013
18. Jo, B.-H., et al., Three-dimensional micro-channel
fabrication in polydimethylsiloxane (PDMS) elastomer. Journal
of microelectromechanical systems, 2000. 9(1): p. 76-81.
19. Neethirajan, S., et al., Microfluidics for food, agriculture
and biosystems industries. Lab on a Chip, 2011. 11(9): p.
1574-1586.
20. Baver, Christine, et al. "Relating dynamic contact angle to
wetting front instability." EGU General Assembly Conference
Abstracts. Vol. 15. 2013.
21. de Gennes, Pierre-Gilles, Brochard-Wyart, Francoise, Quere,
David Capillarity and Wetting Phenomena Drops, Bubbles, Pearls,
Waves (2004)
22. Blois, Gianluca, Julio M. Barros, and Kenneth T. Christensen.
"A microscopic particle image velocimetry method for studying
the dynamics of immiscible liquid–liquid interactions in a
porous micromodel." Microfluidics and Nanofluidics 18.5-6
(2015): 1391-1406.
23. NIEBER, DAUTOV, EGOROV,SHESHUKOV, Dynamic Capillary Pressure
Mechanism for Instability in Gravity-Driven Flows; Review and
Extension to Very Dry Conditions, transp Porous Med (2005)
58:147–172, DOI 10.1007/s11242-004-5473-5, Springer 2005
指導教授 李明旭、許少瑜(Ming-Hsu Li) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明