博碩士論文 101682003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.82.10.219
姓名 張齡云(Ling-Yun Chang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 新震模信息法與地震群湯模型之研究
(A study on an improved pattern informatics method and the soup-of-group model for earthquakes)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-31以後開放)
摘要(中) 要直接測量複雜地震斷層系統中的狀態變數是相當困難的,但透過測量型態變數(如:地震活動度)的變化可以了解系統的狀態。震模信息法是計算地震活動度變異量的方法,其物理概念是透過在希爾伯特空間中分解出地震活動度於時間空間的基本型態(特徵向量),計算地震活動度在變化區間中每個位置之狀態向量的相位角飄移量,因而得到與災害地震相關的地震活動度異常區。Cheong[2014]將群湯模型應用在地震系統的研究,由粒狀介質的交互作用結合和分裂成各種大小的叢集模擬地震系統,並貼切的展現出許多觀察到的地震特性,如冪律分布等。本研究中首次利用群湯模型中災害地震發生前地震活動度在不同的規模段都會產生變化的特性改良震模訊息法。新式震模信息法會先計算不同規模段的相對機率,再相乘所有相對機率得到新的相對機率。利用新式震模信息法本研究規律計算了每個月的熱點圖,並觀察規模大於5.5之目標地震的前兆現象,再以ROC法檢測計算結果,最後發現利用新方法所得到之異常區比原始方法更加顯著且和災害地震有密切的關係,有效的改善了低地震活動度區雜訊的問題。相較於之前僅計算一個時間點的PI值,本研究透過除以時空中最高的PI值,可以同時比較及考量空間中所有網格在所有時間點的PI值,得到可能隱含地震發生機率概念的「絕對PI值」,也可以訂出對於全部時間和空間而言與災害地震有關聯性的絕對PI高值區域。
摘要(英) Earthquakes originate from a driven nonlinear threshold system. It’s impossible to fully understand the dynamical processes and measure the internal state variables, but we can know the system by pattern state. Rundle et al. purposed the Pattern Informatics (PI) method to analyze the changes of seismicity before and around a large earthquake[Rundle et al., 2003; Tiampo et al., 2002a; Chen et al., 2005; 2006; Wu et al., 2008a]. In this study, we calculated the anomaly area which associated with large earthquakes in Taiwan region by PI method from Taiwan CWB earthquakes catalog. Chenong et al. [2014] well applied the Soup-of–group (SOG) model, a mathematics model, to earthquakes system. In SOG earthquake model, the numbers of small events had expectation decreased (seismic quiescence) in order of magnitude before the large earthquake occur. Therefore, in this study, we first time ever improved the PI method, inspired from SOG model, by calculating the change of seismicity rate by dividing the magnitude range into several segments and multiple them to get a new PI relative probability. We retrospectively tested the target earthquakes with magnitude larger than 5.5 from 2000 to 2016 by new PI method, and objectively evaluated the performances of the new method by the Relative Operating Characteristic (ROC) method which were significantly better than original results. Finally, we obtained absolute PI values by comparing the PI values of all the grids in space at 204 timing, and it was possible to define a true absolute high value region for all of time and space in the future calculations. The most important is that the future large earthquakes will occur with high probability in these anomaly areas determined by absolute PI high value from this study, so there is a high probability that absolute PI values can be delicate converted into the probability of earthquake occurrence.
關鍵字(中) ★ 地震活動度
★ 震模信息法
★ 群湯模型
關鍵字(英) ★ seismicity
★ pattern informatics method
★ soup-of-group model
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 前言 1
1-1 引言 1
1-2 驅動非線性閾值系統與地震的關係 2
1-3 臨界轉變的概念和地震的關係 3
1-4 研究動機與目的 5
第二章 研究方法─震模信息法與接收者操作特徵曲線圖 10
2-1 震模信息法的物理及數學概念 10
2-2 台灣的地震分布與地震資料的來源和選擇 12
2-3 原始震模信息法的操作步驟 14
2-4 接收者操作特徵(Relative Operating Characteristic, ROC)曲線圖 18

第三章 群湯模型的物理觀念 32
3-1 群湯模型 32
3-2 群湯模型的數值模擬與特性 33
3-3 地震系統與群湯模型的關係 38
第四章 引入群湯模型觀念之新式震模信息法 46
4-1 物理模型與地震預測 46
4-2 震模信息法與群湯模型的連結 47
4-3 新式震模信息法 49
4-4 新式震模信息法的計算結果 50
4-5 不同t0參數計算結果之比較 53
4-6 絕對PI值之探討 55
第五章 討論 64
5-1 地震目錄的選取 64
5-2 新式震模信息法的優缺點 66
5-3 利用新式震模信息法計算義大利區域的結果 68
第六章 結論 79
參考文獻 81
附錄A 90
附錄B 142
參考文獻 Agnew, D. C. and Jones, L. M., Prediction probabilities from foreshocks, J. Geophys. Res., 96(B7), 11959–11971, 1991.
Aranson, I. S., Blair, D., Kalatsky, V. A., Crabtree, G. W., Kwok, W. K., Vinokur, V. M., and Welp, U., Electrostatically driven granular media: phase transitions and coarsening, Phys. Rev. Lett., 84(15), 3306, 2000.
Barriere, B. and Turcotte, D. L., Seismicity and self-organized criticality, Phys. Rev. E, 49(2), 1151-1160, 1994.
Bohorquez, J. C., Gourley, S., Dixon, A. R., Spagat, M., and Johnson, N. F., Nature, 462, 911-914, 2009.
Bowman, D. D., Ouillon G. and Sammis C. G., Sornette A., and Sornette D., An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359–24372, 1998.
Chan, C.-H., Wu, Y.-M., Tseng, T.-L., Lin, T.-L., Chen, C.-C., Spatial and temporal evolution of b-values before large earthquakes in Taiwan, Tectonophysics, 532-535, 215-222, 2012.
Chang, L.-Y., Chen, C.-C., Wu, Y.-H., Lin, T.-W., Chang, C.-H., and Kan, C.-W., A Strategy of Routine Pattern Informatics Operation Applied to Taiwan, Pure Appl. Geophys., 173, 235–244, 2016.
Chen, C.-C., Accelerating seismicity of moderate-size earthquakes before the 1999 Chi-Chi, Taiwan, earthquake: Testing time-prediction of the self-organizing spinodal model of earthquakes, Geophys. J. Int., 155, F1–F5, 2003.
Chen, C.-C., Rundle, J. B., Holliday, J. R., Nanjo, K. Z., Turcotte, D. L., Li, S.C., and Tiampo, K. F., The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence, Geophys. Res. Lett., 32(22), L22315, 2005.
Chen, C.-C., Rundle, J. B., Li, H.-C., Holliday, J. R., Nanjo, K. Z., Turcotte, D. L. and Tiampo, K. F., From tornadoes to earthquakes: Forecast verification for binary events applied to the 1999 Chi-Chi, Taiwan, Earthquake, Terr. Atmos. Ocean. Sci., 17, 503–516, 2006.
Chen, C.-C., and Wu, Y.X., An improved region-time-length algorithm applied to the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int., 166, 1144-1147, 2006.
Cheong, S. A., Tan, T. L., Chen, C.-C., Chang, W.-L., Liu, Z., Chew, L. Y., Sloot, P. M. A., and Johnson, N. F., Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes, Sci. Rep., 4, 3624, 2014.
Dieterich, J. H., A constitutive law for rate of earthquake production and an application to earthquake clustering, J. Geophys. Res., 99, 2601–2618, 1994.
Eguiluz, V. M., and Zimmermann, M. G., Transmission of Information and Herd Behavior: An Application to Financial Markets, Phys. Rev. Lett., 85, 5659-5662, 2000.
Gueron, S., Levin, S. A., The dynamics of group formation, Mathematical Biosciences, 128, 243-264, 1995.
Gutenberg, B., and Richter, C. F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34(4), 185–188, 1944.
Holliday, J. R., Rundle, J. B., Tiampo, K. F, Klein, W. and Donnellan, A., Systematic procedural and sensitivity analysis of the pattern informatics method for forecasting large (M>5) earthquake events in southern California, Pure Appl. Geophys., 163, 2433–2454, 2006.
House, L. S., Sykes, L. R., Davies, J. N., and Jacob, K. H., Identification of a possible seismic gap near Unalaska Island, eastern Aleutians, Alaska, In Earthquake Prediction: An International Review, AGU Monograph, AGU, Washington, D.C., 81–92, 1981.
Huang, Q., Sobolev, G. A. and Nagao, T., Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17, 1995, Tectonophysics, 337, 99–116, 2001.
Jaume, S.C. and Sykes L.R., Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys., 155, 279-305, 1999.
Johnson, N. F., Spagat, M., Restrepo, J. A., Becerra, O., Bohorquez, J. C., Suarez, N., Restrepo, E. M., and Zarama, R., Universal patterns underlying ongoing wars and terrorism, Preprint at〈http://arxiv.org/abs/physics/0605035〉(2006).
Johnson, N. F., Ashkenazi, J., Zhao, Z., and Quiroga,L., Equivalent dynamical complexity in a many-body quantum and collective human system, AIP Adv., 1, 012114, 2011.
Jones, L. M., and Molnar, P., Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults, J. Geophys. Res., 84(b7), 3596–3608, 1979.
Jones, L. M., Foreshocks and time-dependent earthquake hazard assessment in southern California, Bull. Seismol. Soc. Am., 75(6), 1669–1679, 1985.
Kagan, Y. Y. and Jackson, D. D., Long-term earthquake clustering, Geophys. J. Int., 104, 117–133, 1991a.
Kagan, Y. Y. and Jackson, D. D., Seismic gap hypothesis: ten years after, J. Geophys. Res., 96, 21419–21431, 1991b.
Kagan,Y. Y., and Jackson, D. D., Probabilistic forecasting of earthquakes, Geophys. J. Int., 143, 438-453, 2000.
Kanamori, H., The nature of seismicity patterns before large earthquakes, In Earthquake Prediction: An International Review, AGU Monograph, AGU, Washington, D.C., 1–19, 1981.
Kato, N., Ohtake, M., and Hirasawa, T., Possible mechanism of precursory seismic quiescence: regional stress relaxation due to preseismic sliding, Pure Appl. Geophys., 150, 249–267, 1997.
Luding, S., and Herrmann, H. J., Cluster-growth in freely cooling granular media, Chaos, 9(3), 673-681, 1999.
Ma, K.-F., Chan, C.-H., and Stein, R, S., Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110(B05S19) , 2005.
Mogi, K., Some Features of Recent Seismic Activity in and near Japan (2) activity before and after great earthquake, Bull. Earthquake Res. Inst., 47, 395-417, 1969.
Mogi, K., Two kinds of seismic gaps, Pure Appl. Geophys., 117, 1172–1186, 1979.
Nanjo, K. Z., J. B., Rundle, J. R., Holliday, D. L., Turcotte, Pattern Informatics and its Application for Optimal Forecasting of Large Earthquakes in Japan, Pure Appl. Geophys., 163, 2417-2432, 2006.
Press,W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C (2nd Ed.): The Art of Scientific Computing, Cambridge University Press, New York, NY, USA, 1992.
Reasenberg, P. A., Foreshock occurrence before large earthquakes, J. Geophys. Res., 104(B3), 4755–4768, 1999.
Rundle, J. B., Klein, W., Tiampo, K., and Gross, S., Linear pattern dynamics in nonlinear threshold systems, Phys. Rev. E., 61(3), 2418–2432, 2000a.
Rundle, J. B., Klein, W., Turcotte, D. L., and B. D. Malamud, Precursory seismic activation and critical-point phenomena, Pure Appl. Geophys., 157, 2165-2182, 2000b.
Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W. and Sammis, C., Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys., 41(4), 1019, 2003.
Rundle, J. B., Holliday, J. R., Yoder M., Sachs, M. K., Donnellan, A., Turcotte, D. L., Tiampo, K. F., Klein, W., and Kellogg, L. H., Earthquake precursors: activation or quiescence? Geophys. J. Int., 187, 225-236, 2011.
Ruszczycki, B., Burnett, B., Zhao, Z., and Johnson, N. F., Relating the micro?scopic rules in coalescence-fragmentation models to the cluster-size distribution, Eur. Phys. J. B., 72(2), 289-302, 2009.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G., Early-warning signals for critical transitions, Nature, 461(3),53-59, 2009.
Scheffer, M., Hirota, M., Holmgren,M., van Nes, E. H., and Chapin, F. S., Thresholds for boreal biome transitions, Proc. Natl. Acad. Sci. USA, 109, 21384–21389, 2012a.
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., ... and Pascual, M., Anticipating critical transitions, Science, 338(6105), 344-348, 2012b.
Smith, W.D., Evidence for precursory changes in the frequency-magnitude b-value, Geophys. J. R. Astr. Soc., 86, 815-838, 1986.
Tiampo, K. F., Rundle, J. B., McGinnis, S. and Klein, W., Pattern dynamics and forecast methods in seismically active regions, Pure Appl. Geophys., 159, 2429–2467, 2002a.
Tiampo, K. F., Rundle, J. B., McGinnis, S., Gross, S. J. and Klein, W., Mean-field threshold systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett., 60(3), 481–487, 2002b.
Tiampo, K.F., Klein, W., Li, H.C., Mignan, A., Toya, Y., Kohen-Kadosh, S.Z.L., Rundle, J.B., and Chen, C.-C., Ergodicity and earthquake catalogs: Forecast testing and resulting implications, Pure Appl. Geophys., 167, 763-782, 2010.
Turcotte, D. L., Self-organized criticality, Rep. Prog. Phys., 62, 1377–1429, 1999.
Wang, J.-H., B values of shallow earthquakes in Taiwan, Bull. Seismol. Soc. Am., 78, 1243–1254, 1988.
Wiemer, S. and Wyss, M., Seismic quiescence before the Landers (M = 7.5) and Big Bear (M = 6.5) 1992 earthquakes, Bull. Seismol. Soc. Am., 84(3), 900–916, 1994.
Wu, Y.-H., Chen, C.-C. and Rundle, J.B., Precursory seismic activation of the Pingtung (Taiwan) offshore doublet earthquakes on 26 December 2006: A pattern informatics analysis, Terr. Atmos. Ocean. Sci., 19, 743-749, 2008a.
Wu, Y.-H., Chen, C.-C. and Rundle, J.B., Precursory small earthquake migration patterns, Terra Nova, 23, 369-374, 2011.
Wu Y.-M. and Chiao L.Y., Seismic quiescence before the 1999 Chi-Chi, Taiwan Mw7.6 earthquake, Bull. Seismol. Soc. Am., 96, 321–327, 2006.
Wu, Y.-M., Chen, C.-C., Zhao, L. and Chang, C.-H., Seismicity characteristics before the 2003 Chenkung, Taiwan, earthquake, Tectonophysics, 457, 177-182, 2008b.
Wu, Z. L., Chen, Y. T., and Kim, S. G., Physical significance of Earthquake Quanta, Bull. Seismol. Soc. Am., 85(5), 1623-1626, 1996.
Wyss, M., and Habermann, R. E., Precursory seismic quiescence, Pure Appl. Geophys., 126, 319–332, 1988. Wyss, M., and Martirosyan, A., Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia, Geophys. J. Int., 134, 329–340, 1988.
Wyss, M. and Wiemer, S., How can one test the seismic gap hypothesis? The case of repeated ruptures in the Aleutians, Pure Appl. Geophys., 155, 259–278, 1999.
石耀霖,地震數值預報,2013年4月22日,取自http://blog.sciencenet.cn/blog-1249-682749.html。
池谷元伺,地震前動物為何起騷動:電磁地震學之誕生,初版,黃清華(翻譯),水產出版社,基隆市,2000年9月。
吳忠良和陳運泰,地震預測與統計物理,物理,33卷6期,365-371頁,2002。
吳忠良,寂靜地震與地震預測的物理問題,物理,33卷11期,796-800頁,2004。
吳忠良,減輕地震災害的物理學問題,物理,34卷3期,176-180頁,2005。
吳忠良,蔣長勝,彭漢書,朱傳鎮,與地震預測預報有關的幾個物理問題,物理,38卷4期,233-237頁,2009。
吳怡萱,利用PI方法研究地震前兆活動,國立中央大學,博士論文,2010。
李雅渟,模擬地震前兆行為之數值模型,國立中央大學,博士論文,2011。
李賢琦,利用Pattern informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象,國立中央大學,博士論文,2011。
馬騰飛和吳忠良,數值地震預測的關鍵物理問題,物理,42卷4期,256-262頁,2013。
陳建志,Rundle, J. B.,D. L. Turcotte,尹祥礎,從臨界轉變的角度理解地震預測技術,物理,42卷5期,331-335頁,2013。
張壽安,從非線性與統計物理多重角度探討數值地震預測,物理,42卷4期,263-271頁,2013。
張建興和吳逸民,臺灣東部外海之地震定位及其序列分析,台灣地震科學中心,2002年3月31日,取自http://tec.earth.sinica.edu.tw/research/conference/MayShan/thesis/49.pdf
蔣卉,吳忠良,馬騰飛,蔣長勝,對圖像資訊學(PI)演算法的一個回溯性預測檢驗:四川蘆山7.0級地震,物理,42卷5期,334-340頁,2013。
指導教授 陳建志(Chien-chih Chen) 審核日期 2018-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明