博碩士論文 101686001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.233.217.242
姓名 林幼淳(Yu-Chun Lin)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱
(Analyses and modeling of ocean currents and waves: connection with mesoscale eddy, tropical cyclone, phytoplankton and climate variability)
相關論文
★ 南海之熱帶氣旋所引起強烈降溫作用與藻類繁生之研究:左右不對稱之機制探討及生地化模組之改進★ 臺灣地區劇烈降雨及其與西北太平洋颱風極移和東海沉積紀錄的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在海洋表面時常有著不同尺度的海氣交互作用,其涵蓋的範圍從區域海域到整個海盆,時間上從短期變動到長時間氣候尺度,特別是西太平洋海域。本研究論文包含三個部分,其主要目的分別為:(i)了解上層海域在不同空間及時間尺度下的變動,及其變動與大氣動力過程之間的交互作用;(ii)分析與模擬熱帶氣旋中浮游生物藻華的現象;(iii)分析與模擬海表面波浪及其與大氣及氣候動力的連結。

本論文共分為三個章節,分別總結如下:
第一章總結了「北南海溫度浮標所量測之Rossby波與渦漩」(Lin, Oey, Wang, and Liu, 2015),完整全文收錄在附錄一。我們透過研究單一浮標的溫度剖面資料與大範圍的衛星觀測資料,確立了上層海水的溫度波動與大氣驅動力,如風應力旋度、太陽熱能以及西方邊界流等,之間的關係。此研究發現南海北部的渦旋可依形成機制分為兩類,一類是由呂宋島西邊的風應力旋度驅動而形成,另一類則是因黑潮入侵呂宋海峽北部而形成。此兩類渦旋形成後皆向西傳遞至南海北部,同時也隱沒在Rossby波之中,進而在南海北部的溫度浮標內引起不同時間尺度的溫度波動。

第二章總結了「颱風尾流中的降雨藻華」(Lin and Oey, 2016),完整全文收錄在附錄二。太平洋的颱風(或大西洋的颶風)尾流右側的藻華現象主要是因較強的混合作用、湧升現象、及中小尺度的再循環渦流引起的層化作用。此颱風右側藻華多發生在颱風剛經過(初期)的時候,而颱風左側藻華則發生在颱風經過較久(晚期)的時期。颱風左側的藻華其主要是受到西太平洋的垂直風切將導致颱風下的降雨會偏向颱風軌跡的左側,雨水延長了颱風左側的層化作用而造成颱風左側晚期的藻華。利用海洋數值模式模擬颱風降水以及其他觀測資料同樣都顯示颱風的強降雨會增強海水表層的強化作用,減低紊流產生,進而增強藻華作用。

第三章總結了「熱帶氣旋季中因聖嬰現象引起之波浪的兩個面向」(Lin, Oey, and Orfila, 2019),完整全文收錄在附錄三。此研究連結海表面顯著波高的變化與受聖嬰現象影響之熱帶氣旋間的關聯。透過經驗證交函數與波浪數值模式的研究,其結果顯示西太平洋海表面顯著波在氣候尺度的變動上主要受到熱帶氣旋風活躍度的影響,而非大尺度環流風場。而此因聖嬰現象影響之熱帶氣旋對海表面波高的作用可延伸至全球各個海盆。其中,西太平洋的海表面波高在熱帶氣旋季內的變動與其之後的聖嬰現象量值有非常好的相關性,可做為一個聖嬰強度預報的參考依據。
摘要(英) There are multiple air-sea interactions near the ocean surface that covers from regional to basin scale and from short-term to climate variations, especially over the western North Pacific. The thesis consists of 3 parts: (i) to detect and understand annual Rossby waves and mesoscale eddies in South China Sea; (ii) to analyze and model phytoplankton blooming in tropical cyclone wakes, and (iii) to analyze and model surface waves and their connection with atmospheric and climate dynamics. The first part presents an ingenious analysis of detecting Rossby waves and eddies driven by wind stress curl and Kuroshio intrusion based on a single temperature observational mooring coupled with ancillary satellite data in northern South China Sea. The results show the arrivals at subsurface, 300 m depth and deeper, of cool (warm) Rossby waves after their generation near the Luzon Strait in winter (summer). Shorter-period temperature fluctuations, 10~30 days, are caused by southwestward and westward eddies embedded in basin-scale Rossby wave. Two types of eddies were found: eddies propagating southwestward over the continental slope of northern South China Sea, formed southwest of Taiwan triggered by Kuroshio intrusion, and eddies propagating westward from Luzon, forced by annual wind stress curl anomalies and Kuroshio path fluctuation in the Luzon Strait.
The second part of the thesis used 16 years of ocean-color data to identify dominant blooming patterns in the wakes of 141 typhoons in the western North Pacific and the North Atlantic. Right-side asymmetric blooming is observed shortly after the storms, attributed previously to sub-mesoscale re-stratification, but a left-side asymmetry is found thereafter, coinciding with a left-side preference in rainfall due to effect of large-scale wind shear on the storm. Both biophysical model experiments and observations demonstrate that heavier rainfall freshens the near surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming.
The third part of the thesis examines global ocean wave climate in response to tropical cyclones (TCs), using significant wave height (SWH) observed from satellites and WAVEWATCH III model. Tropical cyclone wind generates local waves (wind seas) under TC and long-period waves (swells) that propagate long distances. The genesis location, intensity, and frequency of TCs over the global ocean are strongly affected by the phases of El Nino and Southern Oscillation (ENSO). Our results show that the interannual variations of global ocean surface waves in the subtropics during the summer are strongly dominated by ENSO-related TC activity. Over the western North Pacific, the wind power is stronger in the TC season before an El Nino and weaker before a La Nina. Using composite, empirical orthogonal function and modeling, we show that ENSO-related TC variations dominate the spatial distribution and temporal variation of SWH. Over the western North Pacific, longer-period waves (swells) are driven into northern South China Sea, toward Japan in mid latitudes and toward the central Pacific along the equator due to ENSO-related TC activities. The wind power and SWH over the subtropical western North Pacific lead and regress well with the ENSO index, suggesting that they may potentially serve as useful ENSO predictors.
關鍵字(中) ★ 羅士比波
★ 渦旋
★ 黑潮
★ 熱帶氣旋
★ 浮游植物藻華
★ 顯著波高
★ 聖嬰現象
關鍵字(英) ★ Rossby Wave
★ Eddy
★ Kuroshio
★ Tropical Cyclone
★ Phytoplankton blooming
★ Significant wave height
★ El Nino/Southern Oscillation
論文目次 摘要 I
Abstract III
Acknowledgement V
Table of Contents VI
List of Figures VIII
List of Tables IX
Chapter 1 1
Chapter 2 6
Abstract 6
2.1 Introduction 6
2.2 Data and methods 10
2.3 Results 11
2.3.1 Time series of temperature and SSHA 12
2.3.2 Temperature fluctuations at annual and eddy time scales 14
2.3.3 Temperature fluctuations due to annual Rossby waves TRW 16
2.3.4 Connection between AVISO SSHA and SEATS TRW and Teddy 19
1) LOW-FREQUENCY ANALYSIS: SVD(, <T>) 20
2) HIGH-FREQUENCY ANALYSIS: SVD(-a,Teddy) 23
2.3.5 Connection with the Kuroshio 28
2.4 Discussion and summary 30
Chapter 3 34
Abstract 34
3.1 Introduction 34
3.2 Data and methods 37
3.3 Results 41
3.3.1 Time-dependent blooming asymmetry 41
3.3.2 Observed left-side freshening from ARGO 45
3.3.3 Modeling 48
3.4 Discussion and summary 50
Chapter 4 53
Abstract 53
4.1 Introduction 53
4.2 Data and methods 58
4.2.1 Satellite SWH 58
4.2.2 Wind data 61
4.2.3 Wave model 64
2-3-1 Model validations: 65
4.2.4 ENSO composites 68
4.3 Results 69
4.3.1 Connections of SWH, wind power and wind speed 69
4.3.2 Empirical Orthogonal Function (EOF) 79
4.3.3 The WW3 model 82
4.3.4 ENSO effects on global TC-induced waves 88
4.4 Discussion and summary 91
Chapter 5 94
Chapter 6 95
Reference 97
Appendix 107
參考文獻 Allan, J. and P. Komar, 2000: Are ocean wave heights increasing in the eastern North Pacific? Eos, Transactions American Geophysical Union 81: doi: 10.1029/EO081i047p00561-01. issn: 0096–3941.
Anthes, R. A. and S. W. Chang, 1978: Response of the hurricane boundary layer to changes in sea surface temperature in a numerical model. J. Atmos. Sci. 35, 1240–1255.
Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.
Ash, K. D., and C. J. Matyas, 2012: The influences of ENSO and the subtropical Indian Ocean dipole on tropical trajectories in the southwestern Indian Ocean, Int. J. Climatol., 32, 41–56.
Atlas R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, 2009: Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product. AMS 13thConference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS).
AVISO, 2013: MDT_CNES-CLS13. CLS Space Oceanography Division with support from CNES, accessed 6 December 2014. [Available online at http://www.aviso.altimetry.fr/.]
Babanin, A. V., 2006: On a wave-induced turbulence and a wave-mixed upper ocean layer, Geophys. Res. Lett., 33, L20605, doi:10.1029/2006GL027308.
Babin, S. M., J. A. Carton, T. D. Dickey, and J. D. Wiggert, 2004: Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 109, C03043, doi:10.1029/2003JC001938.
Balaguru, K., R. L. Leung, and J.-H. Yoon, 2013: Oceanic control of northeast Pacific hurricane activity at interannual timescales. Environ. Res. Lett., 8, 044009.
Barber, N. F., and F. Ursell, 1948: The generation and propagation of ocean waves and swell. I. Wave periods and velocities. Philos. Trans. Roy. Soc. London, A240, 527–560.
Barnston, A. G., M. Chelliah and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmosphere-Ocean, 35, 367-383.
Behrenfeld, M. J., 2006: Climate-driven trends in contemporary ocean productivity. Nature. 444, 752–755.
Bender M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science. 327, 454–458.
Boyce, D. G., M. R. Lewis, and B. Worm, 2010: Global phytoplankton decline over the past century. Nature. 466, 591–596.
Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Clim., 5, 541-560.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.
Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05. doi:10.1029/2007GC001861.
Caruso, M., G. G. Gawarkiewicz, and R. Beardsley, 2006: Interannual variability of the Kuroshio Current intrusion in the South China Sea. J. Oceanogr., 62, 559-575.
Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606.
Chan, J. C., 1994: Prediction of the interannual variations of tropical cyclone movement over regions of the western North Pacific. Int. J. Climatol. 14, 527–538.
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972.
Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516–518.
Chang, Y.-L., and L.-Y. Oey, 2012: The Philippines-Taiwan Oscillation: Monsoon-Like Interannual Oscillation of the Subtropical-Tropical Western North Pacific Wind System and Its Impact on the Ocean. J. Climate, 25(5), 1597-1618.
Chang, Y.-L., and L.-Y. Oey, 2013: Coupled Response of the Trade Wind, SST Gradient, and SST in the Caribbean Sea, and the Potential Impact on Loop Current′s Interannual Variability. J. Phys. Oceanogr., 43, 1325–1344.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr., 91 (2). 167–216. doi:10.1016/j.pocean.2011.01.002.
Chen, G., B. Chapron, R. Ezraty, and D. Vandemark, 2002: A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Oceanic Technol., 19, 1849–1859.
Chen, G. X., Y. J. Hou, and X. Q. Chu, 2011: Mesoscale eddies in the South China Sea: mean properties, spatio-temporal variability and impact on thermohaline structure. J. Geophys. Res., 116, C06018, doi:10.1029/2010JC006716.
Chen, S. S., J. A. Knaff, and F. D. Mark Jr, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM, Mon. Wea. Rev. 134, 3190 – 3208.
Chen, S., R. Wu, W. Chen, B. Yu, X. Cao, 2016: Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmos Sci Lett, 17: 384–391.
Chen, W.-B., L.-Y. Lin, J.-H. Jang, and C.-H. Chang, 2017: Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide-Surge-Wave Coupled Model. Water, 9, 549; doi:10.3390/w9070549.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of TCs in the northwest Pacific. J. Climate, 15, 2934–2944.
Chiang, T. L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak:An Ocean’s perfect storm, J. Phys. Oceanogr. 41,221–233.
Chu, P. C., C. W. Fan, C. J. Lozano, and J. L. Kerling, 1998: An airborne expendable bathythermograph survey of the South China Sea, May 1995. J. Geophys. Res.,103, 21,637-21,652.
Chu, P.-S., and J. Wang, 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño years significant? J. Climate, 10, 2683–2689.
Collins, M., 2000: Understanding uncertainties in the response of ENSO to greenhouse warming. Geophys. Res. Lett., 27, 3509–3513.
Cotton, P. D., and D. J. T. Carter, 1994: Cross calibration of TOPEX, ERS-1, and Geosat wave heights, J. Geophys. Res., 99, 25,025– 25,033, Correction, J. Geophys. Res., 100, 7095, 1995.
Cox, A. T., and V. R. Swail, 2001: A global wave hindcast over the period 1958–1997: Validation and climate assessment, J. Geophys. Res., 106(C2), 2313–2329, doi:10.1029/2001JC000301.
Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress, J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.
Donelan, M., M. Skafel, H. Graber, P. Liu, D. Schwab, and S. Venkates, 1992: On the growth of wind-generated waves. Atmos.–Ocean, 30, 457–478.
Elsner, J. B., and K. B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Res., 25, 43–54.
Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature. 455, 92-95
Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech, 23, 179–196.
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. PNAS. 110, 12219-12224.
Fan, Y., S.-J. Lin, S. M. Griffies, and M. A. Hemer, 2014: Simulated global swell and wind-sea climate and their responses to anthropogenic climate change at the end of the twenty-first century. J. Climate, 27, 3516–3536, doi:https://doi.org/10.1175/JCLI-D-13-00198.1.
Fang, G., W. Fang, Y. Fang, and K. Wang, 1998: A Survey of Studies on the South China Sea Upper Ocean Circulation. Acta Oceanogr Taiwan., 37: 1–16.F
Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, 1998: Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240.
Foltz, G. R., K. Balaguru, and L. R. Leung, 2015: A reassessment of the integrated impact of tropical cyclones on surface chlorophyll in the western subtropical North Atlantic. Geophys. Res. Lett. 42, 1158–1164.
Fu, D., P. Chang, and C. M. Patricola, 2017: Intrabasin variability of East Pacific tropical cyclones during ENSO regulated by central American gap winds, Sci. Rep., 7(1), 1658, doi:10.1038/s41598-017-01962-3.
Gan, J., H. Li, E. N. Curchitser, and D. B. Haidvogel, 2006: Modeling South China Sea circulation: Response to seasonal forcing regimes. J. Geophys. Res., 111, C06034.
Gill, A.E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.
Gran, H.H., and T. A. Braarud, 1935: quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on Hydrography, chemistry and turbidity). J. Biol. Board Can. 1(5), 279-467.
Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea.Rev., 112, 1649–1668.
Gulev, S. K., and V. Grigorieva, 2006: Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J. Climate, 19, 5667–5685.
Gulev, S. K., and L. Hasse, 1999: Changes of wind waves in the North Atlantic over the last 30 years. Int. J. Climatol., 19: 1091–1117, doi:10.1002/(SICI)1097-0088(199908)19:10<1091::AID-JOC403>3.0.CO;2-U.
Hanshaw, M. H., M. S. Lozier, and J. B. Palter, 2008: Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic. Geophys. Res. Lett. 35, L01601, doi:10.1029/2007GL031862.
Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 1448–1468.
Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 1225–1246.
Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño– Southern Oscillation and Madden-Julian Oscillation effects, J. Geophys. Res., 111, D22101, doi:10.1029/2006JD007289.
Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 4393–4406.
Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012, Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003.
Houze Jr., R. A., S. S. Chen, B. F. Smull, W. C. Lee, 2007: and Bell, M. M. Hurricane intensity and eyewall replacement. Science. 315(5816), 1235-1239.
Hu, J., Q. Zheng, Z. Sun, and C.K. Tai, 2012: Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J. Geophys. Res., 117, C03010, doi:10.1029/2011JC007525.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995.
Huang, W.-K. and J.-J. Wang, 2015: Typhoon damage assessment model analyses in Taiwan. Nature Hazards, 79, 1, 497-510.
Huang, S.-M. and L.-Y. Oey, 2015: Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone. J. Geophys. Res. 120, 5735-5748, doi:10.1002/2015JC010896.
Huang, S-M and L.-Y. Oey, 2018: Land-falling typhoons are controlled by the meridional oscillation of the Kuroshio Extension. Climate Dyn., 50(320), 1-13. https://doi.org/10.1007/s00382-018-4295-z.
Huisman, J., P. van Oostveen, and F. J. Weissing, 1999: Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol. and Oceanogr. 44, 1781–1787.
Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen, and B. Sommeijer, 2004: Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology. 85, 2960–2970.
Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air-sea exchange and remote sensing. J. Phys. Oceanogr., 46, 41–56, doi:https://doi.org/10.1175/JPO-D-15-0173.1.
Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of windgenerated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277; Corrigendum, 114, C02015, doi:10.1029/2008JC005244.
Hwang, P. A., and E. J. Walsh, 2016: Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. J. Phys. Oceanogr., 46, 2605–2621, doi:https://doi.org/10.1175/JPO-D-16-0051.1.
Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 2316–2326.
Hwang, P. A., H. García‐Nava, and F. J. Ocampo‐Torres, 2011: Observations of wind wave development in mixed seas and unsteady wind forcing, J. Phys. Oceanogr., 41, 2340–2359, doi:10.1175/2011JPO‐D‐11‐044.1.
Jakobsen, F. and H. Madsen, 2004: Comparison and further development of parametric tropical cyclone models for storm surge modelling. J. Wind Eng. Ind. Aerodyn. 92, 375 – 391.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Q. J. Roy Meteorolog. Soc. 121, 821-851.
Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the southermocline equatorial Pacific. J. Phys. Oceanogr., 23, 1192-1207.
Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781–791.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data, Bull. Am. Meteorol. Soc., 91, 363–376.
Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P. Kossin, A. K. Srivastava, and M. Sugi, 2010: Tropical cyclones and climate change. Nat. Geosci. 3, 157-163.
Kuleshov, Y., L. Qi, R. Fawcett, and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection, Geophys. Res. Lett., 35, L14S08, doi:10.1029/2007GL032983.
Kuleshov Y, F. Chane-Ming, L. Qi, I. Chouaibou, C. Hoareau, F. Roux, 2009: Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO. Annales Geophysicae, 27: 2523–2538.
Kundu, P., J. S. Allen, and R. L. Smith, 1975: Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683–704.
Kushnir, Y., V. J. Cardon, J. G. Greenwood, and M. A. Cane, 1997:The recent increase in North Atlantic wave heights. J. Climate, 10, 2107–2113.
Kutzbach, J. E., 1967. Empirical eigenvectors of sea-level pressure, surface temperature, and precipitation complexes over North America. J. of Applied Meteorology, 6(5), 791-802.
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.
Lander, M. A., 1996: Specific tropical cyclone tracks and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170–186.
Landsea, C. W., 2000: El Niño–Southern Oscillation and the seasonal predictability of tropical cyclones. El Niño: Impacts of Multiscale Variability on Natural Ecosystems and Society, H. F. Diaz and V. Markgraf, Eds., 149–181.
Lau, N.-C., and M. J. Nath, 2003: Atmosphere–Ocean Variations in the Indo-Pacific Sector during ENSO Episodes, J. Clim., 16, 3-20.
Li, J., R. Zhang, and B. Jin, 2011: Eddy Characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci., 7. 661-669, doi: 10.5194/os-7-661-2011.
Liang, A. (T.-Y.), L. Oey, S. Huang, and S. Chou, 2017: Long-term trends of typhoon-induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades, J. Geophys. Res. Atmos., 122(5), 2750-2765. doi:10.1002/2017JD026446.
Liang, W.-D., Y. J. Yang, T. Y. Tang, and W.-S. Chuang, 2008: Kuroshio in the Luzon Strait. J. Geophys. Res., 113, C08048.
Lin, I., W. T. Liu, C.‐C. Wu, G. T. F. Wong, C. Hu, Z. Chen, W.‐D. Liang, Y. Yang, and K.‐K. Liu, 2003: New evidence for enhanced primary production by tropical cyclone. Geophys. Res. Lett. 30, 1718, doi:10.1029/2003GL017141.
Lin, Y-.C., L.-Y. Oey, J. Wang and K.K. Liu, 2016: Rossby waves and eddies observed at a temperature mooring in northern South China Sea. J. Phys. Oceangr., 46(2), 517-535. DOI: 10.1175/JPO-D-15-0094.1.
Lin, Y.-C., and L.-Y. Oey, 2016: Rainfall-enhanced blooming in typhoon wakes. Scientific Reports, 6, 31310. DOI: 10.1038/srep31310.
Lin, X.-H., L.-Y. Oey and D.-P. Wang, 2007: Altimetry and drifter assimilations of Loop Current and eddies. JGR, 112(C5), C05046, doi:10.1029/2006JC003779 .
Liu, K. S., and J. C. L. Chan, 2012: Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. Int. J. Climatol., 32, 190–202, doi:10.1002/joc.2259.
Liu, Z., H. Yang, and Q. Liu, 2001: Regional dynamics of seasonal variability in the South China Sea. J. Phys. Oceanogr., 31, 272-284.
Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.
Lu, J., and Q. Liu, 2013: Gap-Leaping Kuroshio and Blocking Westward-Propagating Rossby Wave and Eddy in the Luzon Strait. J. Geophys. Res. Oceans 118, 1170–1181. doi:10.1002/jgrc.20116.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind. J. Atmos. Sci., 28, 702–708.
Madden, R.A. and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40- 50 day period. J. Atmos. Sci., 29, 1109-1123.
Matsuura, T., and T. Yamagata, 1982: On the evolution of nonlinear planetary eddies larger than the radius of deformation. J. Phys. Oceanogr., 12, 440–456.
Mellor, G. L., 2001: One-dimensional, ocean surface layer modeling: A problem and a solution. J. Phys. Oceanogr., 31, 790–809.
Mellor, G. L., M. A. Donelan, and L-Y. Oey, 2008: A surface wave model for coupling with numerical ocean circulation models. J. Atmos. Oceanic Technol., 25, 1785–1807.
Metzger, E. J., 2003: Upper ocean sensitivity to wind forcing in the South China Sea. J. Oceanogr., 59, 783-798, doi: 10.1023/B:JOCE.0000009570.41358.c5.
Moon, I-J, I Ginis and T. Hara, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr. 33, 1680-1706.
Munk, W. H., G. R. Miller, F. E. Snodgrass, and N. F. Barber, 1963: Directional recording of swell from distant storms. Philos. Trans. Roy. Soc. London, A255, 505–584.
Nakamura, H., T. Sampe, Y. Tanimoto, and A. Simpo, 2004: in Earth′s Climate: The Ocean-Atmosphere Interaction Geophysical Monograph 147, pp. 329-346.
Nan, F., H. Xue, P. Xiu, F. Chai, M. Shi, and P. Guo, 2011: Oceanic Eddy Formation and Propagation Southwest of Taiwan. J. Geophys. Res., 116,C12045, doi:10.1029/2011JC007386.
Needham, H. F., B. D. Keim, and D. Sathiaraj, 2015: A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 53, 545–591.
Newman, M. and P. D. Sardeshmukh, 1995: A caveat concerning Singular Value Decomposition. J. Clim., 8, 352-360.
Nicholls, N., 1984: The southern oscillation, sea-surface temperature, and internannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661–670.
Nicholls, N., 1985: Predictability of interannual variations in Australian seasonal tropical cyclone activity. Mon. Wea. Rev., 113, 1144– 1149.
North, G. R., T. L. Bell, and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706.
Oey, L.-Y., 2008: Loop Current and Deep Eddies. J. Phys. Oceanogr. 38(7), 1426-1449.
Oey, L.-Y., T. Ezer, and W. Sturges, 2004: Modeled and observed empirical orthogonal functions of currents in the Yucatan Channel, Gulf of Mexico. Journal of Geophysical Research, 109(C08), C08011, doi: 10.1029/2004JC002345.
Oey, L.-Y., T. Ezer, D.-P. Wang, S.-J. Fan, and X.-Q. Yin, 2006: Loop current warming by Hurricane Wilma. Geophys. Res. Lett., 33, L08613, doi:10.1029/2006GL025873.
Oey, L.-Y., T. Ezer, D.-P. Wang, X.-Q. Yin, and S.-J. Fan, 2007: Hurricane-induced motions and interaction with ocean currents, CSR, 27(9), 1249-1263. doi:10.1016/j.csr.2007. 01.008.
Oey, L.-Y., M. Inoue, R. Lai, X.-H. Lin, S. E. Welsh, and L.J. Rouse Jr., 2008: Stalling of nearinertial waves in a cyclone. Geophys. Res. Lett. 35, L12604. doi:10.1029/2008GL034273.
Oey, L-Y., Y.-L. Chang, S. B. Sun and X. H. Lin, 2009: Topocaustics. Ocean Modelling, 29(4), 277-286.
Oey, L.-Y., M.-C. Chang, Y.-L. Chang, Y.-C. Lin, and F.-H. Xu, 2013: Decadal warming of coastal China Seas and coupling with winter monsoon and currents. Geophys. Res. Lett., 40, 6288–6292, doi:10.1002/2013GL058202.
Oey, L.-Y., R. Chang, S.-M. Huang, Y.-C. Lin and M.-A Lee, 2015: The influence of shelf-sea fronts on winter monsoon over East China Sea. Clim. Dyn. DOI 10.1007/s00382-014-2455-3.
Oey, L.-Y. and S. Chou, 2016: Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades. J. of Geophys. Res. Oceans. DOI: 10.1002/2016JC011777.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag for high wind speeds in TCs, Nature, 422, 279–283.
Price, J.F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr. 11, 153–175.
Qu, T., 2000: Upper Layer Circulation in the South China Sea. J. Phys. Oceanogr., 30 (6): 1450–60.
Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO to the South China Sea? J. Clim., 17, 3644–3657.
Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dyn., 39, 897–917, doi:10.1007/s00382-011-1225-8.
Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: HadSST2 dataset. J.Clim. 19, 446–469.
Rio, M. H., S. Guinehut, and G. Larnicol, 2011: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res., 116, C07018, doi:10.1029/2010JC006505.
Roemmich, D., and J. Gilson, 2001: Eddy Transport of Heat and Thermocline Waters in the North Pacific : A Key to Interannual/Decadal Climate Variability? J. Phys. Oceanogr., 31, 675–87.
Samelson, R. M., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431-440.
Sandwell, D. T., and R. W. Agreen, 1984: Seasonal Variation in Wind Speed and Sea State from Global Satellite Measurements, J. Geophys. Res., 89, 2041-2051.
Saji, N.H., B.N. Goswami, P.N. Vinayachandran and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363.
Semedo, A., K. Suselj, A. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 24, 1461–1479.
Shaman, J., S. K. Esbensen, and E. D. Maloney, 2009: The dynamics of the ENSO–Atlantic hurricane teleconnection: ENSO-related changes to the North African–Asian jet affect Atlantic basin tropical cyclogenesis. J. of Climate, 22(9), 2458-2482.
Shang, S., L. Li, F. Sun, J. Wu, C. Hu, D. Chen, X. Ning, Y. Qiu, C. Zhang, and S. Shang, 2008: Changes of temperature and bio-optical properties in South China Sea in response to Typhoon Lingling. Geophys. Res. Lett. 35, L10602, doi:10.1029/2008GL033502.
Sheu, W.-J., C.-R. Wu, and L.-Y. Oey, 2010: Blocking and Westward Passage of Eddies in the Luzon Strait. Deep Sea Res. II-Top. Stud. Oceanogr., 57, 1783–1791, doi:10.1016/j.dsr2.2010.04.004.
Shibano, R., Y. Yamanaka, N. Okada, T. Chuda, S.‐I. Suzuki, H. Niino, and M. Toratani, 2011: Responses of marine ecosystem to typhoon passages in the western subtropical North Pacific, Geophys. Res. Lett. 38, L18608, doi:10.1029/2011GL048717.
Smith, D. C., and J. J. O′Brien, 1983: The interaction of a two- layer isolated mesoscale eddy with bottom topography. J. Phys. Oceanogr.,13, 1681-1697.
Snodgrass, F. E., G. W. Groves, K. F. Hasselmann, G. R. Miller, W. H. Munk, and W. M. Powers, 1966: Propagation of swell across the Pacific. Philos. Trans. Roy. Soc. London, A259, 431–497.
Solow, A., and N. Nicholls, 1990: The relationship between the Southern Oscillation and tropical cyclone frequency in the Australian region. J. Climate, 3, 1097–1101, doi:10.1175/1520-0442(1990)003,1097:TRBTSO.2.0.CO;2.
Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch, 2007: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Oceans 07 IEEE Aberdeen, Conf. Proc. Mar. Chall. Aberdeen, Scotland.
Stephens, S. A., and D. L. Ramsay, 2014: Extreme cyclone wave climate in the southwest Pacific Ocean: Influence of the El Niño Southern Oscillation and projected climate change. Global Planet Change, 123, 13–26, doi:10.1016/j.gloplacha.2014.10.002.
Sterl, A., G. J. Komen, and P. D. Cotton, 1998: Fifteen years of global wave hindcasts using winds from the European Centre for Medium-Range Weather Forecasts reanalysis: Validating the reanalyzed winds and assessing the wave climate, J. Geophys. Res., 103(C3), 5477–5492, doi:10.1029/97JC03431.
von Storch, H., and A. Navarra, (Eds.), 1995: Analysis of Climate Variability. Springer, New York.
Sun, J. R., and L.-Y. Oey, 2015: The influence of ocean on Typhoon Nuri (2008). Monthly Weather Review, 143(11), 4493-4513, DOI:10.1175/MWR-D-15-0029.1.
Sun, J. R., L.-Y. Oey, R. Chang, F. Xu, and S. M. Huang, 2015: Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea, Ocean Dyn., 65, 735–749, doi:10.1007/s10236-015-0823-0.
Sun, J. R., L.-Y. Oey, F.-H. Xu, and Y.-C. Lin, 2017: Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades. Sci. Rep., 7, 7418, doi:10.1038/s41598-017-07572-3.
Sverdrup, H.U., 1953: On conditions for vernal blooming. J. Cons. Int. Explor. Mer. 18, 287.
Venegas, S. A., L. A. Mysak, and D. N. Straub, 1996: Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys. Res. Lett., 23(19), 2673–2676.
Tamura, H., Y. Miyazawa, and L.-Y. Oey, 2012: The Stokes drift and wave induced-mass flux in the North Pacific, J. Geophys. Res., 117, C08021, doi:10.1029/2012JC008113.
Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming, Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.
Thompson, R. O. Y., 1976: Climatological numerical models of the surface mixed layer of ocean. J. Phys. Oceanogr. 6, 496-503.
Thomas, B. R., E. C. Kent, V. R. Swail, and D. I. Berry, 2008: Trends in ship wind speeds adjusted for observation method and height. Int. J. Climatol., 28: 747–763, doi:10.1002/joc.1570.
Toba, Y., 1972: Local balance in the air-sea boundary processes I. On the growth process of wind waves. J. Oceanogr. Soc. Jpn., 28, 109-120.
Tolman, H. L., 1991: Effects of tides and storm surges on North Sea wind waves. J. Phys. Oceanogr. 21, 766-791.
Tolman, H. L., 2002: User manual and system documentation of WAVEWATCH-III version 2.22, Tech. Note, 222, 133 pp., Mar. Model. and Anal. Branch, Natl. Cent. for Environ. Predict., Natl. Weather Serv., NOAA, Camp Springs, Md.
Tolman, H. L., and D. V. Chalikov, 1996: Source terms in a third-generation wind wave model, J. Phys. Oceanogr., 26, 2497–2518.
Toma, V. and P. J. Webster, 2010: Oscillations of the intertropical convergence zone and the genesis of easterly waves. I Theory and diagnostics. Clim. Dyn., 34, 587-604.
Turner, J.S., 1979: Buoyancy effects in fluids. Cambridge University Press, London. 368pp.
Vikebø, F., T. Furevik, G. Furnes, N. G. Kvamstø, M. Reistad, 2003: Wave height variations in the North Sea and on the Norwegian Continental Shelf, 1881–1999. Cont. Shelf Res., 23, 251–263, doi:10.1016/S0278-4343(02)00210-8.
WAVEWATCH III Development Group, 2016: User manual and system documentation of WAVEWATCH III version 5.16, Tech. Note 329, 326 pp., NOAA/NWS/NCEP/MMAB, College Park, Md.
Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea-surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576, doi:10.1175/1520-0442(1992)005,0561:SVDOWS.2.0.CO;2.
Wang, B., Z. W. Wu, J. P. Li, J. Liu, C.-P. Chang, Y. H. Ding, and G. X. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463, doi: 10.1175/2008JCLI2183.1.
Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, doi: 10.1029/2003GL018532.
Wang, G. H., D. Chen, and J. L. Su, 2008: Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38, 726-732.
Wang, G., J. Li, C. Wang, and Y. Yan, 2012: Interactions among the winter monsoon, ocean eddy and ocean thermal front in the South China Sea, J. Geophys. Res., 117, C08002, doi:10.1029/2012JC008007.
Wang, Y. and G. J. Holland, 1996: Beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 3737-3756.
Wang, J., and L.-Y. Oey, 2014: Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat, Geophys. Res. Lett., 41(23), doi:10.1002/2014GL062118.
Wang, J., and L.-Y. Oey, 2016: Seasonal exchanges of Kuroshio and shelf waters and their impacts on the shelf currents of the East China Sea. Journal of Physical Oceanography, 46(5), 1615-1632. DOI: 10.1175/JPO-D-15-0183.1.
Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, doi: 10.1029/2003GL018532.
Wentz, F. J., J. Scott, R. Hoffman, M. Leidner, R. Atlas, and J. Ardizzone, 2016: Cross-Calibrated Multi-Platform Ocean Surface Wind Vector Analysis Product V2, 1987 - ongoing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. http://rda.ucar.edu/datasets/ds745.1/. Accessed 09 Jan 2017
White, B. W., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 50-61.
Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biometrics Bulletin. 1 (6): 80–83. doi:10.2307/3001968.
Wong, G. T. F., T.-L. Ku, M. Mulholland, C.-M. Tseng, and D.-P. Wang, 2007: The SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea - An overivew. Deep-Sea Res. II, 54, 1434-1447.
Woolf, D. K., Challenor P. G., and Cotton P. D., 2002: The variability and predictability of North Atlantic wave climate. J. of Geophys. Res., 107(C10):9.1–9.14. doi: 10.1029/2001JC001124.
Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanism of South Indian Ocean climate variability, J.Clim., 15, 864–878.
Xu, F.-H., L.-Y. Oey, 2011: The Origin of Along-Shelf Pressure Gradient in the Middle Atlantic Bight. J. Phys. Oceanogr 41(9), 1720-1740.
Xu, F.-H., and L.-Y. Oey, 2014: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905-932, doi: 10.1007/s10236-014-0720-y.
Xu, F.-H., and L.-Y. Oey, 2015: Seasonal SSH Variability of the Northern South China Sea. J. Phys. Oceanogr., 45(6), 1595–1609. doi: http://dx.doi.org/10.1175/JPO-D-14-0193.1.
Xue, H., F. Chai, N. Pettigrew, D. Xu, M. Shi, and J. Xu, 2004: Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res., 109, C02017.
Yang, H., and Q. Liu, 2003: Forced Rossby wave in the northern South China Sea. Deep-Sea Res. Part I: Oceanographic Res. Papers, 50(7). 917-926.
Yang, R.-Y., Y.-C. Wu, H.-H. Hwung, J.-Y. Liou, and I. V. Shugan,, 2010: Current countermeasure of beach erosion control and its application in Taiwan. Ocean & Coastal Manage., 53, 552-561.
Yaremchuk, M., and T. Qu, 2004: Seasonal variability of the large-scale currents near the coast of Philippines. J. Phys. Oceanogr., 23, 844-855.
Yin, X., Z. Wang, Y. Liu, and Y. Xu, 2007: Ocean response to Typhoon Ketsana traveling over the northwest Pacific and a numerical model approach. Geophys. Res. Lett. 34, L21606 doi:10.1029/2007GL031477.
Young, I. R., 1988: Parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637-652, doi:10.1061/(ASCE)0733-950X(1988)114:5(637).
Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261–276, doi:10.1016/S0029-8018(97)00011-5.
Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931. doi:10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.
Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201–218, doi:10.1016/S0951-8339(02)00054-0.
Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.
Young, I. R., and J. Vinoth, 2013: An “extended fetch” model for the spatial distribution of tropical cyclone wind-waves as observed by altimeter. Ocean Eng., 70, 14–24, doi:10.1016/j.oceaneng.2013.05.015.
Young, I.R., S. Zieger, A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332 (6028), 451–455.
Zhang, Z., W. Zhao, J. Tian, and X. Liang, 2013: A mesoscale eddy pair southwest of Taiwan and its influence on dep circulation. J. Geophys. Res., 118, 6479-6494, doi: 10.1002/2013JC008994.
Zhang, Z., W. Zhao, J. Tian, Q. Yang, and T. Qu, 2015: Spatial structure and temporal variability of the zonal flow in the Luzon Strait. J. Geophys. Res. Oceans, 120, 759–776, doi:10.1002/2014JC010308.
Zhang, L., and L.-Y. Oey, 2019a: Young ocean waves favor the rapid intensification of tropical cyclones - a global observational analysis, Mon. Wea. Rev. 147, 311-328.
Zhang, L., and L.-Y. Oey, 2019b: An observational analysis of ocean surface waves in tropical cyclones in the western North Pacific Ocean. Journal of Geophysical Research: Oceans, 124, 184–195. https://doi.org/10.1029/2018JC014517.
Zhao, H., D., Tang, and Y. Wang, 2008: Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in South China Sea. Mar. Ecol. Prog. Ser. 365, 57–65.
Zheng, Z. W., C.-R. Ho, Q. Zheng, N.-J. Kuo, and Y.-T. Lo, 2010: Satellite observation and model simulation of upper ocean biophysical response to Typhoon Nakri. Cont. Shelf Res. 30, 1450–1457.
指導教授 黃如瑤(Lie-Yauw Oey) 審核日期 2019-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明