博碩士論文 102022003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:18.118.9.146
姓名 許俊傑(Chon-Kit Hoi)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
(Application and Discussion for Aerosol Optical Depth Retrieval by using Landsat-7 satellite ETM+ data)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ 對數常態分布在氣膠消光係數廓線擬合之應用
★ 氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用★ 地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析
★ 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用★ 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響
★ 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析★ 福爾摩沙衛星五號遙測儀升空前後等化係數之率定
★ 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係★ 應用地面測站及衛星觀測之氣膠光學厚度估算越南河內地區PM2.5
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣的氣膠不僅模糊了地表的資訊,亦嚴重地影響大氣的環境及氣候 的變遷,在地球資源的遙測與大氣環境的變遷是相當重要的參數之一,因 此有許多利用衛星資料求取氣膠參數的方法陸續地被提出。本文之研究重 點即在於離散係數法(Dispersion coefficient method, DCM)之測試改進與應 用,利用臺北市與北京市十三年的 Landsat7 資料,探討離散係數反演法之 特性,並針對其主要誤差來源進行分析與改進,以增進此方法在氣膠參數 反演之準確性與適用性,包括太陽入射角的影響、地表反射之正規化移動 室窗之大小以及影像間幾何定位等重要影響因子。最後則以 AERONET 地 面測站資料檢驗本研究在離散係數法改進之成效。
研究結果顯示,在波段之平均反射率作為離散係數法之正規化參數之 選擇上,利用短波紅外比可見光及近紅外波段好。其誤差差異在經過太陽 入射角之調整後平均可達 53.5%。在反演視窗大小之選擇上,以大於 7x7 像元視窗大小之反演結果趨向穩定且準確度最佳,如藍光頻道在 9x9 像元 視窗之誤差為 28%。綠光頻道在 7x7 像元視窗的誤差為 29%。另外,紅光 及近紅外光頻道反演之結果由於誤差較大而不適合應用於此方法反演氣膠 光學厚度。
摘要(英) Atmospheric Aerosol Optical Depth (AOD) isn’t burning the information from surface but also impact the environment of atmosphere and climate change. AOD is one parameter as an important character in the field of remote sensing of earth resources and the change of atmospheric environment. This study focuses on Dispersion coefficient method (DCM), which availability, improvement and application. The effect from solar zenith angle and the normalization with visible, near infrared (IR) and short wave infrared (SWIR) band were investigate for DCM retrieval. These results were validated by AERONET ground station and the error range for this method will examined. In addition, SWIR indicated highest sensitivity in solar zenith angle when compare to visible, IR and SWIR bands for DCM normalization. The results show that the AOD spatial distribution from DCM can contribute the region’s air quality monitoring.
This research conducts 13 years data from sunphotometer and LANDSAT-7 ETM+ for AOD retrievals in Taipei and Beijing. The main error sources for DCM’s were analyzed and improved. For the normalize band, the results indicated that using SWIR band was better than other spectral bands. The mean error different was about 53.5%. By using retrieval window, we conclude that the window size after 7x7 tend to be stable. The best results for blue and green band were 9x9 pixel window size and 7x7 pixel window size whereas the error is 28% and 29% respectively. Red and near-infrared bands had the high mean error, therefore not suitable for this method.
關鍵字(中) ★ 氣膠光學厚度
★ 離散係數法
★ AERONET
★ Landsat-7
關鍵字(英) ★ Aerosol Optical Depth (AOD)
★ Dispersion Coefficient Method (DCM)
★ AERONET
★ Landsat-7
論文目次 目錄
摘要...... .............................................................................................................IV ABSTRACT ........................................................................................................ V
致謝...... ........................................................................................................... VII
目錄................................................................................................................... VIII
表目錄..... ........................................................................................................... X
圖目錄.... ............................................................................................................XI
第一章 緒論 .......................................................................................................... 1 1.1 前言................................................................................................................ 1
1.2 研究目的..........................................................................................................3
第二章 文獻回顧 .................................................................................................. 4
2.1 氣膠對大氣輻射的影響 .................................................................................... 4
2.2 氣膠輻射特性.................................................................................................. 5
2.3 氣膠光學厚度.................................................................................................. 6
2.4 氣膠光學厚之反演............................................................................................ 7
第三章 研究方法與資料處理................................................................................... 10
3.1 研究方法......................................................................................................... 10 3.1.1 輻射傳遞方程 ............................................................................................... 10
3.1.2 離散係數法 .................................................................................................. 11
3.1.3 研究架構 ..................................................................................................... 15
3.2 研究資料......................................................................................................... 16 3.2.1 資料收集 ...................................................................................................... 16
3.3 觀測儀器與資料簡介........................................................................................ 17
3.3.1 太陽光度計(Sun photometer) ....................................................................... 17
3.3.2 Landsat-7 資源衛星.................................................................................... 18
3.3.3 MODIS 感測器........................................................................................... 19
3.4 資料處理....................................................................................................... 21 3.4.1 AERONET 資料 .......................................................................................... 21
第四章 結果與討論................................................................................................22
4.1 應用離散係數法於 LANDSAT-7 衛星資料求取大氣氣膠光學厚度 ....................... 22
4.1.1 應用離散係數法於 Landsat-7 衛星資料求取大氣氣膠光學厚度之誤差分析 ........23
4.2 太陽入射角對離散係數法反演大氣氣膠光學厚度之影響 ..................................... 24
4.3 衛星定位對反演氣膠光學厚度之影響與不確定性測試 ........................................ 27
4.4 應用離散係數法於 LANDSAT-7 衛星資料反演都市地區之大氣氣膠光 學厚度.......28
第五章 結論 ........................................................................................................ 31 參考文獻 ............................................................................................................. 34
參考文獻 林和駿,林博雄及劉紹臣,2005: 台灣南北城市氣膠光學厚度的特徵,中 華民國國際氣膠科技研討會,203-212

王聖翔,2007:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場 的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。

Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., & Sierau, B. (2007). Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics, 7(23), 5937- 5943.

Brooks, N., & Legrand, M. (2000). Dust variability over northern Africa and rainfall in the Sahel. In Linking climate change to land surface change (pp. 1-25). Springer Netherlands.

Borde, R., Ramon, D., Schmechtig, C., & Santer, R. (2003). Extension of the DDV concept to retrieve aerosol properties over land from the Modular Optoelectronic Scanner (MOS) sensor. International Journal of Remote Sensing, 24(7), 1439-1467.

Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik, 162(5), 78-88.

Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., ... & Schafer, J. S. (2012). An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D17).

Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. Geoscience and Remote Sensing, IEEE Transactions on, 42(3), 557-569.

Herman, J. R., & Celarier, E. A. (1997). Earth surface reflectivity climatology at 340–380 nm from TOMS data. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D23), 28003-28011.

Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381.

Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., and Flynn, L., 1997, ”The MODIS 2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol.” IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286-1298

Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., ... & Korrmann, R. (2002). Global air pollution crossroads over the Mediterranean. Science, 298(5594), 794-799.

Liu, C. H., Chen, A. J., & Liu, G. R. (1996). An image-based retrieval algorithm of aerosol characteristics and surface reflectance for satellite images. International Journal Of Remote Sensing, 17(17), 3477-3500.

Lin, T. H., Chen, A. J., Liu, G. R., & Kuo, T. H. (2002). Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain. International Journal of Remote Sensing, 23(4), 647-659.

Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., ... & Strawa, A. (2010). Absorption Angstrom Exponent in
AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, 10(3), 1155-1169.

Sano, I., Mukai, S., Okada, Y., Holben, B. N., Ohta, S., & Takamura, T. (2003). Optical properties of aerosols during APEX and ACE‐Asia experiments. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D23).

Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.

Sobolev, V. V. (1972). Scattering of Light in Planetary Atmospheres. Fizmatgiz, Moscow.

Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres (1984–2012), 93(D12), 15955-15964.
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2016-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明