博碩士論文 102022006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.173.112
姓名 王禹翔(Yu-shiang Wang)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用多元衛星光學影像於懸浮沉積物之監測 -以台灣卑南溪河口為例
(Application of multi-satellite optical image to suspended sediments monitoring - Case study of Pinan River estuary in Taiwan)
相關論文
★ 應用Landsat MSS/TM & ETM 影像偵測湄公河的變遷★ 應用雷達干涉法在彰化縣員林地區地層下陷研究
★ 合成孔徑雷達影像之地形線形特徵萃取★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ 應用ASTER影像於南蒙古戈壁沙漠區之地表礦物辨識
★ 台北盆地及周圍山區之現今地表變形研究★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定★ 莫拉克風災山崩區域之地質構造與大地應力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來光學衛星被廣泛用來做大面積的環境監測,其中懸浮沉積物濃度(SSC)變化為眾多監測項目中相當重要的目標之一,在光學影像中懸浮沉積物的濃度越高,通常反映出越高的光譜反射率。有鑑於複雜的環境變因,前人研究大多由衛星影像獲取水體反射率,配合水樣採集的濃度紀錄,建立區域性的預測模型。卑南溪位於台灣東南部,發源於中央山脈,豐沛的颱風降雨與陡峭短促的河道,造就卑南溪成為台灣重要的沉積物輸出河。本研究彙整水利署與環保署長期的懸浮沉積物濃度監測紀錄,以及多顆衛星(FORMOSAT-2、SPOT-4、SPOT-5、SPOT-6)於台灣上空定期拍攝的影像資料。從中篩選2005~2013年53筆同期的實測資料與衛星影像,探討水體反射率與實測濃度的變化關係,並於大氣校正工作後得到最佳的濃度預測模型,接著再以2014年的實測資料進行預測模型的分析與驗證,並發現多元回歸分析有較準確的預測結果,R2為0.9766,預測斜率為1.0431。本研究後段以2011年為例,利用預測模型成功提升懸浮沉積物濃度監控之頻率與擴散分布之細節,整合全年的水文資來分析濃度變化的控制因素,並多次監測出懸浮沉積物濃度已達觸發高濃度重力流之門檻。透過水體反射率標準差分析可能的觀測誤差來源發現,預測結果易受環境影響,特別是河道乾濕季的變化以及海面波浪的干擾,可能都是觀測誤差的主因。若未來能針對此誤差因素進行改善,相信對懸浮沉積物濃度之監測可提供更準確的預測結果,並大幅提升監測頻率與範圍,進而彌補傳統定點人力監測的不足。
摘要(英) Suspended sediment concentration (SSC) is an important indicator of sediment output. Recently, some SSC predictions had been carried out by using optical satellites imagery in different areas. In general, the more suspension sediment in water can directly reflect the higher reflectance of solar radiation. Therefore, most studies developed unique relationships by relating field measurements of SSC to reflectance data from satellite imagery. In this study, we focused on the Pinan River estuary which is born from the largest river in eastern Taiwan. In order to identify an appropriate SSC-reflectance model, we combined our optical satellite images, which included FORMOSAT-2, SPOT-4, SPOT-5 and SPOT-6, with the field data from 2005 to 2013. After doing atmospheric correction, we got the best model with Multiple Regression analysis method. The important thing is that the method has more accurate in predicting SSC, after proving our model with the latest field data in 2014. In the final part, we used the model to resupply the SSC data in 2011, and discussed the characteristics of sediments output with rainfall and discharge. Actually, it is useful for us to replace those stations to get the SSC distribution outside the estuary. And, there are several hyperpycnal flow events occurred at the bottom of the estuary, while the SSC exceeding the threshold (40,000ppm). We also discussed the characteristic of spectral and the source of errors from environment effects. While getting more ways to reduce those noises, we could have better model to predict the SSC. At the same time, it also could enhance the frequency and range of monitoring, and make up for a lack of manual monitoring.
關鍵字(中) ★ 懸浮沉積物濃度
★ 光學衛星
★ 卑南溪
★ 大氣校正
★ 高濃度重力流
關鍵字(英) ★ suspended sediment concentration
★ optical satellites
★ Pinan River
★ atmospheric correction
★ hyperpycnal flow
論文目次 目    錄
中文摘要....................................................I
英文摘要....................................................II
誌  謝....................................................III
目  錄....................................................IV
圖 目 錄....................................................VI
表 目 錄....................................................VIII

第一章 緒論................................................1
1-1 前言...................................................1
1-2 研究動機與目的..........................................3
1-3 論文架構...............................................5
第二章 文獻回顧............................................6
2-1 河流沉積物傳輸.........................................6
2-2 懸浮沉積物的傳輸特性....................................7
2-3 懸浮沉積物濃度的觀測....................................11
2-3-1 傳統觀測.............................................11
2-3-2 衛星遙測方法.........................................11
2-3-3 聲學儀器觀測.........................................13
2-3-4 其他觀測方法.........................................13
2-4懸浮沉積物的光學特性......................................17
第三章 研究材料與方法.......................................20
3-1 研究區域...............................................22
3-2 實測資料的採集與處理....................................23
3-3 影像資料的收集與處理....................................26
3-3-1 影像的取得與篩選......................................27
3-3-2 影像產品校正與數值轉換................................30
3-3-3 大氣校正方法.........................................34
3-3-4 水體反射率萃取.......................................37
3-4 資料回歸分析方法.......................................40
3-5 其他水文資料...........................................40
第四章 研究結果............................................42
4-1 懸浮沉積物濃度預測模型之建立(2005-2013).................42
4-1-1 簡單回歸分析結果.....................................45
4-1-2 多元回歸分析結果.....................................50
4-2 預測結果之驗證(2014)...................................54
第五章 討論................................................57
5-1 河口懸浮沉積物濃度時序分布之探討.........................57
5-1-1 卑南溪河口懸浮沉積物時序分析...........................57
5-1-2 卑南溪河口高濃度重力流事件.............................60
5-1-3 水文資料與懸浮沉積物濃度之關係.........................61
5-2 河口懸浮沉積物濃度空間分布之探討.........................63
5-2-1 卑南溪河口懸浮沉積物空間分析...........................63
5-2-2 海流與懸浮沉積物擴展之關係.............................67
5-3 水體光譜反射率分析......................................71
5-4 懸浮沉積物濃度預測之可行性..............................73
5-5 影像預測模型誤差來源分析................................76
5-5-1 影像來源分析.........................................76
5-5-2 水體反射率標準差控制..................................83
第六章 結論與建議..........................................87
6-1 結論..................................................87
6-1-1 懸浮沉積物濃度的預測過程..............................87
6-1-2 懸浮沉積物濃度的預測誤差..............................88
6-2 建議..................................................89
參考文獻...................................................90
附  件...................................................97
參考文獻 中文部分
王鑫 (1991) 地形學,聯經出版事業公司,共356頁。
王炳忠 (1988) 太陽輻射能的測量與標準,科學出版社,共334頁。
王如意 (2005) 應用水文學(上冊),國立編譯館,共525頁。
中央大學太遙中心 (2010) 國立中央大學太空及遙測研究中心資源衛星接收站使用者手冊(第五版),取自http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinVer/C5Product/ Download/userGuide_130610.pdf。
行政院環保署環檢所 (2013) 水中總溶解固體及懸浮固體檢測方法,取自http://www.niea.gov.tw/。
行政院環境保護署 (2014) 全國環境水質監測資訊網-水質年報,取自http://wq.epa.gov.tw/WQEPA/Code/Report/ReportList.aspx。
何智武 (1984) 台灣河川上游集水區之泥砂來源與控制,中華水土保持學報,第15卷第1期,第15- 25頁。
陳惠芬 (1984) 從三角點檢測成果見到的台灣的地盤升降。經濟部中央地質調查所特刊,第三號,頁127-140。
陳怡良 (2009) 民國98年颱風調查報告-第8號莫拉克(Morakot)颱風(0908),取自http://photino.cwb.gov.tw/rdcweb/lib/cd/cd02tyrp/typ/Typ.html。
國家太空中心 (2015) 福衛二號特性與應用,取自http://www.nspo.narl.org.tw/tw2015/F2_image/property.html.
曾禹倫 (2010) 台灣東部地區懸浮沉積物與山崩在颱風事件中的相對應關係,國立台灣大學地質科學研究所碩士論文,共96頁。
景國恩 (2013) 台灣地區動態座標框架立之先期研究-台灣現今之地殼變形模式,國土測繪與空間資訊,第一卷第2期,第99-117頁。
溫志超 (2006) 河川流量測定與水質檢驗整合性評估,經濟部水利署,共339頁。
楊凱傑 (2012) 運用雙衛星平台遙測影像建立沿岸水體高時空分辨率總懸浮物質分布圖:以高屏河口為例,國立成功大學環境工程學系碩士論文,共169頁。
經濟部中央地質調查所 (2013) 經濟部中央地質調查所集水區地形及地質資料庫流域調查成果入口網,取自http://gwh.moeacgs.gov.tw/gwh/gsb97-2/ sys9/。
經濟部水利署 (2014) 水文資料網路查詢系統-水文年報歷年電子書,取自http://gweb.wra.gov.tw/wrhygis/。
經濟部水利署 (2014) 經濟部水利署全球資訊網-河川報導,取自http://www.wra.gov.tw/。
經濟部水利署 (2015) 臺灣地區近10年(94-103)降雨量概況,取自http://www.wra.gov.tw/。
鄧淑萍、蘇元風、羅漢強、陳永寬、鄭克聲 (2010) 福衛二號影像之大氣輻射校正-輻射控制區的應用,農業工程學報,第56卷第3期,第63-73頁。
鄭宇凡 (2011) 濁水溪河口懸浮沉積物輸送之調查研究,國立中央大學水文與海洋科學研究所碩士論文,共271頁。
颱風部屋 (2015) 1897-2012年侵台颱風登陸地點分段統計,取自http://www.tyroom.url.tw/typhoon/taistat.htm。
潘國樑 (2009) 遙測學大綱:遙測概念原理與影像判釋技術(第二版),科技圖書,共300頁。
蕭文龍 (2009) 多變量分析最佳入門實用書(第二版),碁峰出版社,共1112頁。

英文部分
Airbus (2010) SPOT satellite technical data, from http://www.geo-airbusds.com/.
Airbus (2013) SOPT6/SPOT7 Technical sheet, from http://www.geo-airbusds.com/.
Bowers, D.G., Binding, C.E. & Ellis, K.M. (2007) Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea, Estuarine, Coastal and Shelf Science, 73, 457-466.
Curran, P.J. & Novo, E.M. (1988) The relationship between suspended sediment concentration and remotely sensed spectral radiance: A review, Journal of Coastal Research, 4(8), 361-385.
Chang, C.P., Angelier, J. & Huang, C.Y. (2000) Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan, Tectonophysics, vol. 325, 43-62.
Chen, C.T.A., Liu, J.T. & Tsuang, B.J. (2004) Island-based catchment - the Taiwan example, Regional Environmental Change, 4, 39-48.
Chung, C.C., Lin, C.P., Wu, I.L., Chen, P.H. & Tsay, T.K. (2013) New TDR waveguides and data reduction method for monitoring of stream and drainage stage, Journal of Hydrology, 505, 346–351.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. & Lin, J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogeny, Nature, 426, 648-651.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, T.C., Milliman, J. & Strak, C.P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt, Geology, 8, 733-736.
Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Horng, M. J. & Chen, H. (2005) Hyperpycnal river flows from an active mountain belt, Journal of Geophysical Research, Vol. 110, F04016, doi:10.1029/2004JF000244.
Ferrai, G.M., Bo, G.F. & Babin, M. (2003) Geo-chemical and optical characterizations of suspended matter in Europen coastal water, Estuarine, Coastal and Shelf Science, 57, 17-24.
Gin, K.Y.H., Koh, S.T. & Lin, I.I. (2003) Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in tropical waters, International Journal of Remote Sensing, 24:16, 3235-3245.
Gerace, A.D., Schott, J.R. & Nevins, R. (2013) Increased potential to monitor water quality in the near-shore environment with Landsat’s next-generation satellite, Journal of Applied Remote Sensing, Vol. 7, 073558:1-17.
Hill, P.S., Milligan, T.G. & Geyer, W.R. (2000) Controls on effective settling velocity of suspended sediment in the Eel River flood plume, Continental Shelf Research, 20, 2095-2111.
Hessner, K. & Rubino, A. (2001) The Rhine Outflow Plume Studied by the Analysis of Synthetic Aperture Radar Data and Numerical Simulations. Journal of Physical Oceanography, vol. 31, 3030-3044.
Hellweger, F.L., Schlosser, P., Lall, U. & Weissel, J.K. (2004) Use of satellite imagery for water quality studies in New York Harbor, Estuarine, Coastal and Shelf Science, 61, 437-448.
Jansen, R.H. (1979) An Ultrasonic Doppler Scatterometer for Measuring Suspended Sand Transport, In: Novak, Z (Ed.), Ultrasonic International 79, Conference Proceedings. Graz, Austria, UI 79, pp. 336–369.
Kao, S. J., Lee, T. Y. & Milliman, J. D. (2005) Calculating Highly Fluctuated Suspended Sediment Fluxes from Mountainous Rivers in Taiwan, TAO, Vol. 16, No. 3, 653-675.
Kilcher, L. F. & Nash, J. D. (2010) Structure and dynamics of the Columbia River tidal plume front, Journal of Geophysical Research, vol. 115, C05S90.
Kilham, N. E., Roberts, D. & Singer M. B. (2012) Remote sensing of suspended sediment concentration during turbid flood conditions on the Feather River, California - A modeling approach, Water Resources Research, Vol. 48, W01521, doi:10.1029/2011WR010391, 2012
Linke, F. (1956) Die Sonnestrahlung und ihre schwachung in der atmosphere, Handbuch der geopgyisk, Bd. VIII, herausgeg, von F. Linke, and F. Moeller (Berlin: Gebr. Borntraeger).
Legleiter, C. J., Roberts, D. A., Marcus, A. W. & Fonstad, M. A. (2004) Passive optical remote sensing of river channel morphology and instream habitat: Physical basis and feasibility, Remote Sensing of Environment, Vol 93, Issue 4, 493–510.
Lihan, T., Saitoh, S.I., Iida, T., Hirawake, T. & Iida, K. (2008) Satellite-measured temporal and spatial variability of the Tokachi River plume, Estuarine, Coastal and Shelf Science, 78, 237-249.
Moore, G.K. (1978) Satellite surveillance of physical water quality characteristics, Proceedings of the 20th International Symposium on Remote Sensing of Environment, Ann Arbor, 445-462.
Mulder, T. & Syvitski J. P. M. (1995) Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans, The journal of geology, Vol. 103, No. 3, pp. 285-299.
Miller, R.L. & Mckee, B.A. (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing of Environment, 93, 259-266.
Ma, Y., Wright, L.D. & Friedrichs, C.T. (2008) Observations of sediment transport on the continental shelf off the mouth of the Waiapu River, New Zealand: Evidence for current-supported gravity flows. Continental Shelf Research, 28, 516-532.
Orton, P.M. & Kineke, G.C. (2001) Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from a Hudson River Estuary Turbidity Maximum, Estuarine, Coastal and Shelf Science, 52, 401-410.
Orton, P.M., Jay, D.A. & Wilson, D.J. (2003) A multi-class suspended particulate matter calibration for bottom boundary layers, Civil and Environmental Engineering Faculty Publications and Presentations, Paper 32.
Pavelsky, T. M.& Smith, L. C. (2009) Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada, Water Resources Research, Vol. 45, W11417, doi:10.1029/2008WR0074 24.
Restrpo, J.D., Kjerfve, B., Hermelin, M. & Restrepo, J.C. (2006) Factors controlling sediment yield in a major South American drainage basin: The Magdalena River, Colombia, Journal of Hydrology, 316, 213-232.
Rekacewicz, P. & Bournay, E. (2007) AMAP Assessment Report, Arctic Pollution Issues, from http://www.amap.no/.
Rohde, R.A. (2007) Solar Spectrum, from http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png.
Scully, M.E. & Friedrichs, C.T. (2007) Sediment pumping by tidal asymmetry in a partially mixed estuary, Journal of Geophysical Research, vol. 112, C07028.
Sadeghi, S.H.R., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T., Mizugaki, S. & Onda, Y. (2008) Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed, Geoderma, 144, 198-211.
Siegle, E., Schettini, C.A.F., Klein, A.H.F. & Toldo Jr., E.E. (2009) Hydrodynamics and suspended sediment transport in the Cambriú estuary - Brazil: pre jetty conditions, Brazilian Journal of Oceanography, vol. 57, 123-135.
Thurman, H. V. (1993) Essentials of Oceanography, 4th ed.
Thorne, P.D. & Hanes, D.M. (2002) A review of acoustic measurement of small-scale sediment processes, Continental Shelf Research, 22, 603-632.
Volpe, V., Silvestri, S. & Marani, M. (2011) Remote sensing retrieval of suspended sediment concentration in shallow waters, Remote Sensing of Environment, 115, 44-54.
Villar, R.E., Martinez, J.M., Texier, M.L., Guyot, J.L., Fraizy, P., Meneses, P.R. & Oliveria, E. (2013) A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images, Journal of South American Earth Sciences, 44, 45-54.
Wolanski, E., Fabricius, K. E., Cooper, T.F. & Humphrey, C. (2008) Wet season fine sediment dynamics on the inner shelf of the Great Barrier Reef, Estuarine, Coastal and Shelf Science, 77, 755-762.
Wang, J.J., Lu, X.X., Zhou,Y. & Liew, S.C. (2012) Remote Sensing of Suspended Sediment Concentrations in Turbid Rivers: A Field Survey, Proceedings of Global Geospatial Conference 2012, Canada.
Yang, Q., Stramski, D. & He, M.X. (2013) Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters, Optical Society of America, Vol. 52, 359-374.
指導教授 張中白(Chung-pai Chang) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明