博碩士論文 102022602 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:
姓名 陳清民(TRAN THANH DAN)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用LANDSAT衛星資料偵測及預估全球紅樹林之變遷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 紅樹林位於熱帶及副熱帶地區,它連接海洋與人類居住的土地,提供人類多樣的生態及社會經濟功能。同時,在世界上許多地方的紅樹林正以驚人的速率在減少。但減少的比率及原因不得而知。
監測紅樹林的時空變化對於紅樹林自然資源管理是相當重要的。因此,本研究的目的有以下幾項:(1) 繪製全球現今紅樹林的分布現況:西非及中非地區、東南亞、澳洲及中美洲地區;(2) 利用Landsat衛星影像判釋紅樹林1998至2014年的變遷情形(增加或減少);(3) 預測未來紅樹林變遷的情形。研究方法分為以下五個步驟:(1) 資料前處理,包含大氣校正及影像常態化;(2) 利用支持向量機(Support Vector Machine - SVM)進行監督式影像分類;(3) 影像分類結果的精度評估;(4) 紅樹林變遷偵測分析;(5) 紅樹林預測結果分析。
對於本研究的四個地區,紅樹林的面積大多維持相同或些許的增加/減少。西非及中非地區:1998年至2014年紅樹林減少的比率約16.9%,然而在同時間約有2.5%的紅樹林復育或新種植;澳洲西部:整體而言,此地區27年來紅樹林消失非常快速(減少比率約20.85%);中美洲- Gulf of Fonseca地區:此地區26年來紅樹林的約減少16.24%,然而有一小部分(4.32%)為新種植或復育;東南亞地區- Sundarbans delta:此地區的紅樹林約增加15.3%。紅樹林的減少是因為森林濫伐、過度開發、自然災害及紅樹林的復育。都市化造成許多環境問題,包含棲地的喪失、生物多樣性的減少及加速海岸侵蝕。
本研究利用Probabilistic Landscape Modelling and Simulation Tool (ProLAMS)預測中美洲地區(Gulf of Fonseca)紅樹林至2027年的變化情形,此模式為機率預測的方法,整合遙測資料及地理資訊資料進行地景的模擬。結果顯示,預測的結果與2001年和2014的分類結果進行比較,顯示紅樹林的總面積些微的增加。然而,未來的紅樹林的面積維持相同或些許的減少。紅樹林預測的結果受到模式中許多參數的影響。因此,制度及政策的干預可以考慮做為一區域紅樹林管理的因素。
摘要(英) Tropical mangrove forests are located in the tropical and subtropical regions, and they connect our land and people with the sea, providing various ecological and socioeconomic services for humans. At the same time, mangrove forests in many parts of the world are declining at an alarming rate-possibly. Monitoring spatiotemporal distribution of mangrove forests is thus critical for natural resource management. Therefore, the research objective are: (i) mapping mangrove forests in the four regions around the world: West and Centre Africa, Southeast Asia, Australia and Central America using Landsat data from 1988 to 2014; (ii) identifying mangrove forests cover change (gain and loss) in three past decades; and (iii) predicting changes of mangrove forests in the future. The data were processed through five main steps: (1) data pre-processing including atmospheric correction and image normalization; (2) image classification using supervised classification approach (Support Vector Machine – SVM); (3) accuracy assessment for the classification results; (4) change detection analysis; and (5) change projection analysis.
In all four cases of study, mangrove area have increased or decreased seriously. In West and central Africa: The loss of mangrove forests from 1988 to 2014 was approximately 16.9%, while only 2.5% was recovered or newly planted at the same time; Australia –Western: the overall changes in the area is decreased of mangrove forests very dramatically (loss about 20.85% of mangrove forests) from 27 years study. And Central America – Gulf of Fonseca: the overall change within the study area during this 26 years indicated the loss of approximately 16.24% of mangrove forest, while a small proportion of mangrove forests in the region (4.32%) was newly planted or rehabilitated while Southeast Asia - in Sundarbans delta: the overall change of mangrove forests was increased approximately 15.3% of total mangrove forests area. The decline of mangroves due to the deforestation, overexploitation, natural catastrophes deforestation and mangrove rehabilitation programs. Urbanization has caused environmental issues including habitat loss, reduction of biodiversity, and increased coastal erosion.
For mangroves change projection, this research was projected changes until 2027 within the in-situ area that was selected in four sites of study by using Probabilistic Landscape Modelling and Simulation Tool (ProLAMS) which integrates the remote sensing data and geographic information data for landscape modeling and prediction by using probabilistic simulation approach. The results shown that the total area of mangrove forests increased a little bit when compared with classification results in 2001 and 2014. However, mangroves area was remain unchanged or slightly decreased in the future. Mangrove prediction result effected by the input variables as well as the parameters used within the model. Thus, institutional or policy interventions may be taken into account to improve management of mangrove forests in the regions. The overall efforts in this study demonstrate the effectiveness of the proposed method used for investigating and predicting the spatiotemporal changes of mangrove forests.
關鍵字(中) ★ LANDSAT衛星資料 關鍵字(英) ★ LANDSAT
1-1 Background 1
1-2 Statement of the problems 4
1-3 Research questions 5
1-4 Research objectives 5
3-1 Study area 12
3-1-1 West and Central Africa 12
3-1-2 Southeast Asia: Sundarbans delta 14
3-1-3 Australia: Western Australia 15
3-1-4 Central America: Gulf of Fonseca 16
3-2 Data collection 17
3-2-1 Landsat data 17
3-2-2 DEM data 19
3-2-3 Ancillary data 19
4-1 General workflow 21
4-2 Data preprocessing 22
4-2-1 Layer stacking 22
4-2-2 Geometric and atmospheric correction 27
4-2-3 Image normalization and mosaicking 30
4-2-4 Subset data and mask out non-vegetation 30
4-3 Image classification 34
4-3-1 Training samples selection 34
4-3-2 Evaluation training samples 35
4-3-3 Image classification - Support Vector Machine (SVM) algorithm 36
4-3-4 Image filtering 39
4-4 Accuracy assessment 39
4-5 Change detection 42
4-6 Predicting changes of mangroves 43
4-6-1 Logistic regression 43
4-6-2 Cellular Automata 43
5-1 West and Central Africa 50
5-1-1 Spatial distribution of mangroves forest and accuracy check 50
5-1-2 Detecting changes in mangrove forests 54
5-2 Southeast Asia – Sundarbans Delta 60
5-2-1 Spatial distribution of mangrove forest in Sundarbans delta 60
5-2-2 Changes in mangrove forests in Sundabans delta 63
5-3 Western Australia 67
5-3-1 Spatial distribution of mangrove forests and accuracy check 67
5-3-2 Changes in mangrove forests 70
5-4 Gulf of Fonseca – Central America 73
5-4-1 Spatial distribution of mangrove forest and accuracy assessment 73
5-4-2 Changes in mangrove forest 77
5-5 Mangrove change projection result 80
5-5-1 West and Central Africa 81
5-5-2 Southeast Asia 85
5-5-3 Western Australia 98
5-5-4 Central America 93
6-1 Conclusion 97
6-2 Recommendation 98
參考文獻 Alongi, D.M. (2002). Present state and future of world’s mangrove forest. Environmental Conservation, 29, 331-349.
Ajonina, G.N et al. (2013). Assessment of carbon pools and multiple benefits of mangroves in Central Africa for REDD+.
Ajonina, G.N., Ayissi, I. & Usongo, L. (2004). Inventory of Coastal Wetlands of Cameroon/Inventaire des Zones Humides Côtieres du Cameroun. Wetlands International report.
Ajonina, G.N & Usongo, L. (2001). Preliminary quantitative impact assessment of wood extraction on the mangroves of Douala-Edea Forest Reserve, Cameroon. Tropical Biodiversity, 7, 137–149.
African Birding Club 2005. Guinea Bissau. African Birding Resources. Available at http://www.africanbirdclub.org/countries /GuineaBissau/conservation.html (accessed 5 July 2005).
Bayan, A., Ahmad A.H., Ryutaro T., Toshiyuki K., Nguyen T.H. (2013) Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM. Journal of Geographic Information System, 5, 369-377.
Berlanga, R., Ruiz, L. (2002). Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. Journal of Coastal Research, 18, 514-522.
Blasco, F., Carayon, J.L. & Aizpuru, M. (2001). World Mangrove Resources. Glomis Electronic Journal. Available at http://www.glomis. com/ej/pdf/ej02.pdf.
Blasco, F., Aizpuru, M. (2002). Mangroves along the coastal stretch of the Bay of Bengal: present status. Journal of India Marine Science. 31, 9e20.
Blasco, F., Saenger, P. & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27, 167-178.
Blasco, F., Gauquelin, T., Rasolofoharinoro, M., Denis, J., Aizpuru, M. & Caldairou, V. (1998). Recent advances in mangrove studies using remote sensing data. Marine and Freshwater Research, 49, 287-296.
Burges, C. J. (1998). A Tutorial on Support Vector Machines for Pattern Recognition, in Data Mining and Knowledge Discovery, U. Fayyad, Ed. Kluwer Academic, pp. 1–43.
Butler, K., 2013. ArcGIS Resources. http://blogs.esri.com/esri/arcgis/2013/07/24/bandcombinations-for-landsat-8/. Retrieved: 15 – 05 – 2014.
Cideciyan, A.V., Jacobson, S.G., Kemp, C.M., Knighton, R.W. & Nagel, J.H. (1992). Registration of High-Resolution Images of the Retina. Medical Imaging VI: Image Processing, 1652, 310–322.
Congalton, R.G. & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Florida.
Chen, C.F., Nguyen, T.S., Chang, N.B., Chen C.R., Chang L.Y., Valdez, M., Centeno, G., Thompson, C.A. & Aceituno, J.l. (2013). Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model. Journal of Remote Sensing, 5, 6408-6426.
Chen, H. & Ho, P. (2008). Statistical pattern recognition in remote sensing. Pattern Recognition, 41, 2731–2741.
Chevallier, R. (2013). Balancing Development and Coastal Conservation: Mangroves in Mozambique. http://www.isn.ethz.ch/Digital-Library/Publications/Detail/?lng=en&id=174162
Chiang, S. H., Son, N. T., Chen, C. F. (2014a). Probablistic urban simulation in Ho Chi Minh City, Vietnam , 35th Asian Conference on Remote Sensing (ACRS) 2014.
Chiang. S. H, Chang, L. C., Chen, C. F. (2014b). Integrating Landsat Imagery and Probabilistic Landscape Simulation (ProLAMS) for Mangrove Forest Change Detection and Prediction in Irrawaddy Delta, South Myanmar, 7th Corss-Straits Remote Sensing Conference 2014 (in Chinese with English abstract).
Congalton, R.G. & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Florida.
Congalton, R.G., Oderwald, R.G., & Mead, R.A. (1983). Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Journal of Personality and Social Psychology, 49, 1671-1678.
Chaffey, D.R., Miller, F.R., Sandom & J.H. (1985). A Forest Inventory of the Sundarbans, Bangladesh. Overseas Development Administration, Land Resources Development Centre, Surrey, England, p. 187.
Castro, E. A., & Donoho, D. L. (2009). Does Median Filtering Truly Preserve Edges Better than Linear Filtering? The Annals of Statistics 37, no. 3, 1172-1206. (http://projecteuclid.org/euclid.aos/1239369019).
Concheddaa, G., Durieuxb, L. & Mayauxa, P. (2008). An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS Journal of Photogrammetry & Remote Sensing, 63, 578–589.
Danaher, K. 1994 Mangrove mapping in the Cape York region. 7th Australasian Remote Sensing Conference, 1–4 March 1994, Melbourne, Australia, Volume 3, pp. 22–27.
Dahlgren, C. P. & Eggleston, D. B. (2000). Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Journal of Ecology, 81, 2227–2240.
Dahdouh-Guebas., F., I. Van Pottelbergh, J.G. Kairo, S. C, K. N. (2004). Human-impacted mangroves in Gazi (Kenya): predicting future vegetation based on retrospective remote sensing, social surveys, and distribution of trees. Marine Ecology Progress Series, 272 (2004), pp. 77–92.
Dahdouh-Guebas, F. (2002) The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environment, Development and Sustainability 4: 93-112.
Dickenson, J., J. Bustillo, J. Jimenez, C. Onuf, D. Rouse, J. Varela & E. Villega. (1985). Estudio ambiental de las pequenas fincas camaroneras. PTR (Program of Rural Technologies). USAID, and Honduras Tropical Research and Development.
Doute., R.N., N. Ochanda, H. Epp. (1981). A Forest Inventory Using Remote Sensing Techniques. Kenya Rangelands Ecological Monitoring Unit and Department of Resource Survey and Remote Sensing Technical Report, No. 30. Department of Resource Survey and Remote Sensing, Nairobi (1981) 72 pp.
Everitt, J.H., Yang, C., Sriharan, S. & Judd, F.W. (2008). Using high resolution satellite imagery to map black mangrove on the Texas Gulf Coast. Journal of Coastal Research, 24, 1582-1586.
Eastman, J.R., 1995. IDRISI for Windows, Version 1.0 .Worcester MA: Clark University.
FAO. The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007; Available online: ftp://ftp.fao.org/docrep/fao/010/a1427e/a1427e00.pdf (accessed on 30 October 2009).
FAO. The world’s mangroves 1980–2005. FAO Forestry Paper 153. (2007)
Fatoyinbo T.E., M. Simard, R.A. Washington-Allen, H.H. Shugart. (2008). Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Resources, 113.
Ferreira., M.A. F. Andrade, P. Cardoso, J. Paula. (2009). Coastal habitat mapping along the Tanzania/Mozambique transboundary area using Landsat 5 TM imagery. Western Indian Ocean Journal of Marine Science, 8 (1) (2009), pp. 1–13.
Gang., P.O., J.L. Agatsiva. (1992). The current status of mangroves along the Kenyan coast: a case study of Mida Creek mangroves based on remote sensing. Hydrobiologia, 247 (1992), pp. 29–36.
Gillis, L. G. et al. (2014). Potential for landscape-scale positive interactions among tropical marine ecosystems: A review. Journal of Marine Ecology Progress Series.
Giri, C., Ochieng, L.L., Tieszen, Z., Zhu, A. & Singh, T. (2011). Global Ecology and Biogeography, Global Ecology and Biogeography, 20, 154–159.
Giri, C., Pengra, B., Zhu, Z., Singh, A., Tieszen, L.L. (2007). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Journal of Estuarine, Coastal and Shelf Science, 73, 91e100.
Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S. & Kelmelis, J.A. (2008) Mangrove forest distributions and dynamics (1975-2005) of the tsunami-affected region of Asia. Journal of Biogeography 35: 519-528.
Green, E.P., Mumby, P.J., Edwards, A.J., Clark, C.D. & Ellis, A.C. (1998). The assessment of mangrove areas using high resolution multispectral airborne imagery. Journal of Coastal Resource, 14, 433-443.
Islam, M. S., & Ahmed, R. (2011). Land use change prediction in Dhaka city using GIS aided Markov chain modeling. Journal of Life and Earth Science, 6, 81-89.
Jensen, J. R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, 2d ed. Upper Saddle River, NJ: Prentice Hall.
Kathiresan, K. & Bingham, B.L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.
Liu, K., Li, X., Shi, X., & Wang, S. (2008). Monitoring mangrove forest changes using remote sensing and gis data with decision-tree learning. Wetlands, 28, 336–346.
Kavzoglu, T. & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11, 352–359.
Kay, R. J. & Hick, P. 1988 Rainforest identification in the Kimberley region of Western Australia using Landsat satellite data. In Remote Sensing of the Coastal Zone, International Symposia, held on the Gold Coast, Queensland, Australia, 7–9 September 1988. Department of Geographic Information, Brisbane, Session VB, Paper 2, VB.2.1–VB.2.16.
Lugo, A.E. & Snedaker, S.C. The ecology of mangroves. Journal of Annual Review of Ecology, Evolution, and Systematics, 5, 39-64.
Lillesand, T.M., & Kiefer, R.W. (1994). Remote Sensing and Image Interpretation, 3rd Ed., John Wiley and Sons, Inc.: Toronto.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159-174.
Lillesand, T. M., & Kiefer, R. W. (2000). Remote Sensing and Image Interpretation. Wiley & Son, New York.
Malthus, T.J. & Mumby, P.J. (2003). Remote sensing of the coastal zone: An overview and priorities for future research. Journal of Remote Sensing, 24, 2805-2815.
Manson, F. J., Loneragan, N. R., Harch, B. D., Skilleter, G. A. & Williams, L. (2005). A broad-scale analysis of links between coastal fisheries production and mangrove extent: A case-study for northeastern Australia. Fisheries Research, 74, 69–85.
Mumby, P. & Edwards, A. (2000) Remote Sensing Objectives of Coastal Managers. In Green, E. P., Mumby, P. J., Edwards, A. J. & Clark, C. D. (Ed. Edwards, A. J.). Remote Sensing Handbook for Tropical Coastal Management. Coastal Management Sourcebooks 3, UNESCO, Paris. pp. 31-39.
Mumby, P. & Green, E. (2000) Mapping Coral Reefs and Macroalgae. In Green, E. P., Mumby, P. J., Edwards, A. J. & Clark, C. D. (Ed. Edwards, A. J.). Remote Sensing Handbook for Tropical Coastal Management. Coastal Management Sourcebooks 3, UNESCO, Paris. pp. 155-174.
Mumby, P. J. et al. (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–6.
Mongabay. 2006. Guinea Bissau. In: Tropical Rainforests. Available at http:// rainforests.mongabay.com/20guinea-bissau.htm (accessed 19 July 2006).
Macintosh, D.J. & Ashton, E.C. (2003). Report on the Africa Regional Workshop on the sustainable management of mangrove forest ecosystems. ISME/cenTER/CAW.
Nagelkerken, I. et al. (2001). Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Marine Ecology Progress Series, 2001, 214, 225–235.
Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C., Clay, J., Folke, C., Lubchenco, J., Mooney, H. & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017-1024.
Neukermans., G., F. Dahdouh-Guebas, J.G. Kairo, N. Koedam. (2008). Mangrove species and stand mapping in Gazi bay (Kenya) using quick bird satellite imagery. Journal of Spatial Science, 53 (2008), pp. 75–86
Ogden, J. C., Nagelkerken, I. & McIvor, C. C. in Interrelat (2014). Between coral reefs Fish. Marine Biological Services.
Primavera, J.H. (2005). Mangroves, fishponds, and the quest for sustainability. Science, 310, 57-59. 60.
Primavera, J.H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manage, 49, 531-545.
Ramsar. (2012) Wetland Tourism: USA – The Everglades National Park. A Ramsar Case Study on Tourism and Wetlands. 1–6. at http://www.ramsar.org/pdf/case_studies_tourism/USA/USA_EN-.pdf
Spalding, M.D., Blasco, F. and Field, C.D.,eds. (1997). World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan.
Seto, K.C., Fragkias, M. (2007). Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Journal of Global Environment Change, 17, 486-500.
Sirikulchayanon, P., Sun, W. and Oyana, T.J. (208). Assessing the impact of the 2004 tsunami on mangroves using remote sensing and GIS techniques. Journal of Remote Sensing, 29, 3553-3576.
Selvam, V., Ravichandran, K.K., Gnanappazham, L. and Navamuniyammal, M. (2003). Assessment of community-based restoration of Pichavaram mangrove wetland using remote sensing data. International Journal of Current Science, 85, 794-798.
Shumway, C.A. (1999). Forgotten Waters: Freshwater and MarineEcosystems in Africa: Strategies for Biodiversity Conservation and Sustainable Development. Available at http://www.uneca.org/awich/FORGOTTEN%20WATERS FRESHWATER%20AND.pdf (accessed 26 July 2006).
Swain, P.H., & Wacker, A.G. (1971). Comparison of the Divergence and B-Distance in Feature Selection. Laboratory for the Applications of remote Sensing. Purdue University, West Lafayette, Indiana 47906, 12pp.
Said, A.R. (2007). Personal communication via email through the Abidjan Convention Secretariat. Re: Review of Report – Mangroves of West Africa.
Tercero, A., Chen, C. F., Chiang, H. S. (2014). Monitoring and predicting the urban development of Guatemala City, Guatemala , 35th Asian Conference on Remote Sensing (ACRS) 2014.
Thu, P. M. & Populus, J. (2007) Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science 71: 98-109.
Tomlinson, P.B. (2001). The Botany of Mangroves; Cambridge University Press: Melbourne, VIC, Australia.
Tomlinson, P.B. (1986). The Botany of Mangroves. Cambridge University Press, Cambridge, UK.
Teichert-Coddington, D. (1999). Shrimp farming in southern Honduras: A case for sustainable production. In U. Hatch and M. Swischer, (Eds), Managed Ecosystems: The Mesoamerican Experience. New York: Oxford University Press.
UNEP-WCMC (2006). Spatial data layer of Mangrove distribution derived through Landsat image classification, UNEP-WCMC, Cambridge, UK. Data analysis, July 2006. Cambridge, UK.
Vaiphasa, C., Skidmore, A.K. & de Boer, W.F. (2006). A post-classifier for mangrove mapping using ecological data. ISPRS Journal Photogrammetry Remote Sensing, 61, 1-10.
Vo, Q.T.; Oppelt, N., Leinenkugel, P. & Kuenzer, C. (2013). Remote Sensing in Mapping Mangrove Ecosystems - An Object-Based Approach. Journal of Remote Sensing, 5, 183-201.
Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982).
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer, New York, 2nd edition.
Vergne, P., M. Hardin and B. DeWalt. (1993). Environmental Study of the Gulf of Fonseca. Gainesville, FL: Tropical Research and Development.
WCMC (UNEP World Conservation Monitoring Centre), 2005. Protected Areas Database. Available from http://www.wcmc.org.uk/data/database/un_combo. html.
Yates, K. K. et al. (2014). Mangrove habitats provide refuge from climate change for reef-building corals. Bio-geo-sciences Discussion 11, 5053–5088.
Zhu, G., Blumberg, D.G. (2002). Classification using ASTER data and SVM algorithms; The case study of Beer Sheva, Israel. Remote Sensing of Environment 80 (2), 233–240.
指導教授 陳繼藩 審核日期 2015-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明